1.

Record Nr.

UNINA9911015874903321

Autore

Cheng Xu

Titolo

Computational Methods for Blade Icing Detection of Wind Turbines / / by Xu Cheng, Fan Shi, Xiufeng Liu, Shengyong Chen

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025

ISBN

981-9667-63-1

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (347 pages)

Collana

Engineering Applications of Computational Methods, , 2662-3374 ; ; 24

Altri autori (Persone)

ShiFan

LiuXiufeng

ChenShengyong

Disciplina

629.8

Soggetti

Mechatronics

Renewable energy sources

Time-series analysis

Machine learning

Renewable Energy

Time Series Analysis

Machine Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- State of the art -- Modeling of time series -- Attention-based convolutional neural network for blade icing detection -- Multiscale Graph-based neural network for blade icing detection -- Multiscale Wavelet-Driven Graph Convolutional Network for Blade Icing Detection -- Prototype-based Semi-supervised blade icing detection -- Class Imbalanced Federated Learning Model for Blade Icing Detection -- Heterogeneous Federated Learning Model for Blade Icing Detection -- Blockchain-enhanced Federated Learning Model for Blade Icing Detection -- Concluding remarks.

Sommario/riassunto

This book thoroughly explores the realm of data-driven blade-icing detection for wind turbines, focusing on multivariate time series classification to enhance the reliability and efficiency of wind energy utilization. The widespread prevalence of sensor technology in wind turbines, coupled with substantial data collection, has paved the way



for advanced data-driven methodologies, which do not require extensive domain knowledge or additional mechanical tools. The interdisciplinary appeal of this study has drawn attention from experts in fields like computer science, mechanical engineering, and renewable energy systems. Adopting a comprehensive approach, the book lays down a foundational framework for blade-icing detection, stressing the critical role of sensor data integration and the profound impact of machine learning techniques in refining the detection processes. The book is designed for undergraduate and graduate students keen on renewable energy technologies, researchers delving into machine learning applications in energy systems, and engineers focusing on sustainable solutions for enhancing wind turbine performance.

2.

Record Nr.

UNISANNIOUBO1672068

Autore

Cherubini, Umberto

Titolo

Matematica finanziaria : applicazioni con Visual basic per Excel / Umberto Cherubini, Giovanni Della Lunga

Pubbl/distr/stampa

Milano [etc.], : McGraw-Hill, [2002]

ISBN

8838660360

Descrizione fisica

XIV, 533 p. ; 24 cm + 1 CD-ROM.

Collana

Workbooks

Altri autori (Persone)

Della Lunga, Giovanni

Disciplina

332.015118

Soggetti

Finanza - Impiego dei sistemi esperti

Collocazione

M/S       (C) 21                  319

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia