| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911015874903321 |
|
|
Autore |
Cheng Xu |
|
|
Titolo |
Computational Methods for Blade Icing Detection of Wind Turbines / / by Xu Cheng, Fan Shi, Xiufeng Liu, Shengyong Chen |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2025.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (347 pages) |
|
|
|
|
|
|
Collana |
|
Engineering Applications of Computational Methods, , 2662-3374 ; ; 24 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
ShiFan |
LiuXiufeng |
ChenShengyong |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mechatronics |
Renewable energy sources |
Time-series analysis |
Machine learning |
Renewable Energy |
Time Series Analysis |
Machine Learning |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Introduction -- State of the art -- Modeling of time series -- Attention-based convolutional neural network for blade icing detection -- Multiscale Graph-based neural network for blade icing detection -- Multiscale Wavelet-Driven Graph Convolutional Network for Blade Icing Detection -- Prototype-based Semi-supervised blade icing detection -- Class Imbalanced Federated Learning Model for Blade Icing Detection -- Heterogeneous Federated Learning Model for Blade Icing Detection -- Blockchain-enhanced Federated Learning Model for Blade Icing Detection -- Concluding remarks. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book thoroughly explores the realm of data-driven blade-icing detection for wind turbines, focusing on multivariate time series classification to enhance the reliability and efficiency of wind energy utilization. The widespread prevalence of sensor technology in wind turbines, coupled with substantial data collection, has paved the way |
|
|
|
|
|
|
|
|
|
|
|
|
|
for advanced data-driven methodologies, which do not require extensive domain knowledge or additional mechanical tools. The interdisciplinary appeal of this study has drawn attention from experts in fields like computer science, mechanical engineering, and renewable energy systems. Adopting a comprehensive approach, the book lays down a foundational framework for blade-icing detection, stressing the critical role of sensor data integration and the profound impact of machine learning techniques in refining the detection processes. The book is designed for undergraduate and graduate students keen on renewable energy technologies, researchers delving into machine learning applications in energy systems, and engineers focusing on sustainable solutions for enhancing wind turbine performance. |
|
|
|
|
|
|
2. |
Record Nr. |
UNISANNIOUBO1672068 |
|
|
Autore |
Cherubini, Umberto |
|
|
Titolo |
Matematica finanziaria : applicazioni con Visual basic per Excel / Umberto Cherubini, Giovanni Della Lunga |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano [etc.], : McGraw-Hill, [2002] |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
XIV, 533 p. ; 24 cm + 1 CD-ROM. |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Finanza - Impiego dei sistemi esperti |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |