|
5. Perturbation and mean field theory -- 5.1. Background -- 5.2. Virial expansions -- 5.3. Zwanzig's perturbation theory -- 5.4. Mean field theory |
6. Density functional theory -- 6.1. Density functional theory for electronic structure -- 6.2. Density functional theory for classical fluids |
7. Classical-DFT for electrolyte interfaces -- 7.1. Molecular models of electrolytes -- 7.2. Classical-DFT for point-charge electrolytes -- 7.3. Classical-DFT for finite-size electrolytes -- 7.4. Classical-DFT with correlations -- 7.5. Classical-DFT with cohesive interactions -- 7.6. Classical-DFT for systems with active surfaces -- 7.7. Classical-DFT for water -- 7.8. Classical-DFT for electrokinetic systems |
part II. Structure of a single electric double layer : effects due to surface charge regulation and non-Coulombic interactions. 8. Molecular properties of a single electric double layer -- 8.1. Classical density functional theory model of a single flat electric double layer -- 8.2. Solution structure in an electric double layer with surface charge regulation -- 8.3. Conclusions |
9. Ionic solvation effects and solvent-solvent interactions -- 9.1. Solvation of the potential determining ions -- 9.2. Solvation of the positive non-potential determining ions -- 9.3. Solvation of the negative non-potential determining ions -- 9.4. Effect of the solvent-solvent fluid interactions -- 9.5. Conclusions |
10. Surface solvation and non-Coulombic ion-surface interactions -- 10.1. Solvent-surface interactions. Solvophilic and solvophobic surfaces -- 10.2. Effect of the non-Coulombic interactions between the potential determining ions and the charged wall -- 10.3. Effect of the non-Coulombic positive ions--surface interactions -- 10.4. Effect of the non-Coulombic negative ions--surface interactions -- 10.5. Conclusions |
11. The potential distribution in the electric double layer and its relationship to the fluid charge -- 11.1. The Poisson equation for structured electrolyte solutions -- 11.2. Molecular interpretation of the Helmholtz planes, the Stern-Grahame layer, and the electrokinetic shear plane -- 11.3. Conclusions |
12. Electric double layers containing multivalent ions -- 12.1. Multivalent ion density profiles in the electric double layer -- 12.2. Effect of the non-potential-determining ions valency on the density profiles of the potential determining ions in the electric double layer -- 12.3. Non-Coulombic surface interactions, charge and potential distributions in the Stern-Grahame layer and beyond -- 12.4. Conclusions |
13. Ionic size effects -- 13.1. Ionic size variations and solution density -- 13.2. Conclusions |
part III. Numerical methods. 14. Molecular simulation : methods -- 14.1. Background -- 14.2. Molecular dynamics methods -- 14.3. The potential distribution theorem (PDT) -- 14.4. Simulation routes to the grand potential |
15. Molecular simulation : applications -- 15.1. Background -- 15.2. One-component plasma -- 15.3. Molten salts -- 15.4. Bulk electrolytes |
16. Numerical methods for classical-DFT -- 16.1. Solution methods -- 16.2. Algorithms for constructing phase diagrams. |