1.

Record Nr.

UNINA990000854470403321

Autore

Airy, George Biddell <1801-1892>

Titolo

Gravitation : an elementary explanation of the principal perturbation in the solar system / G. B. Airy

Pubbl/distr/stampa

Ann Arbor- Michigan, : Neo Press, 1969

Descrizione fisica

173 p. ; 18 cm

Disciplina

531

Locazione

FINBN

Collocazione

02 9 E 9

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNICAMPANIASUN0132823

Autore

Posner, Eric A.

Titolo

Last resort : the financial crisis and the future of bailouts / Eric A. Posner

Pubbl/distr/stampa

219 p., : ill. ; 24 cm

ISBN

978-02-264-2006-6

Edizione

[Chicago]

Descrizione fisica

Pubblicazione in formato elettronico

Disciplina

338.5

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9911009166103321

Autore

Baskal Sibel

Titolo

Physics of the Lorentz group : beyond high-energy physics and optics / / Sibel Baskal, Young S. Kim, Marilyn E. Noz.

Pubbl/distr/stampa

Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : , : IOP Publishing, , [2021]

ISBN

9780750336062

0750336064

9780750336079

0750336072

Edizione

[Second edition.]

Descrizione fisica

1 online resource (various pagings) : illustrations (some color)

Collana

IOP ebooks

Disciplina

512/.2

Soggetti

Lorentz groups

Rotation groups

Mathematical physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Version: 20210205"--Title page verso.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Lorentz group and its representations -- 1.1. Generators of the Lorentz group -- 1.2. Two-by-two representation of the Lorentz group -- 1.3. Conformal representation of the Lorentz group -- 1.4. Representations of the Poincaré group -- 1.5. Representations of the Lorentz group based on harmonic oscillators -- 1.6. Wigner functions for the Lorentz group

2. Wigner's little groups for internal space-time symmetries -- 2.1. Euler decomposition of Wigner's little group -- 2.2. O(3)-like little group for massive particles -- 2.3. E(2)-like little group for massless particles -- 2.4. O(2, 1)-like little group for imaginary-mass particles -- 2.5. Further properties of Wigner's little groups -- 2.6. Little groups in the light-cone coordinate system

3. Group contractions -- 3.1. Contraction with squeeze transformations -- 3.2. Contractions of the O(3) rotation group -- 3.3. Contraction of the O(2, 1) Lorentz group -- 3.4. Contraction of the Lorentz group -- 3.5. Tangential spheres

4. Two-by-two representations of Wigner's little groups -- 4.1. Transformation properties of the energy-momentum four-vector --



4.2. Two-by-two representations of Wigner's little groups -- 4.3. Lorentz completion of the little groups -- 4.4. Bargmann and Wigner decompositions -- 4.5. Conjugate transformations -- 4.6. One little group with three branches -- 4.7. Classical damped harmonic oscillator

5. Relativistic spinors and polarization of photons and neutrinos -- 5.1. Two-component spinors -- 5.2. Massive and massless particles -- 5.3. Dirac spinors and massless particles -- 5.4. Polarization of massless neutrinos -- 5.5. Scalars, vectors, tensors, and the polarization of photons

6. Lorentz-covariant harmonic oscillators -- 6.1. Dirac's plan to construct Lorentz-covariant quantum mechanics -- 6.2. Dirac's forms of relativistic dynamics -- 6.3. Running waves and standing waves -- 6.4. Little groups for relativistic extended particles -- 6.5. Further properties of covariant oscillator wave functions -- 6.6. Lorentz contraction of harmonic oscillators -- 6.7. Feynman's rest of the Universe

7. Quarks and partons in the Lorentz-covariant world -- 7.1. Lorentz-covariant quark model -- 7.2. Feynman's parton picture -- 7.3. Proton structure function -- 7.4. Proton form factor and Lorentz coherence -- 7.5. Coherence in energy-momentum space -- 7.6. Hadronic temperature and boiling quarks

8. Wigner functions and their symmetries -- 8.1. Symmetries and the uncertainty principle in the Wigner phase space -- 8.2. Four-dimensional phase space -- 8.3. Canonical transformations -- 8.4. SL(4, r) symmetry -- 8.5. Dirac matrices for O(3, 3) -- 8.6. O(3, 3) symmetry

9. Coupled harmonic oscillators and squeezed states of light -- 9.1. Coupled oscillators -- 9.2. Lorentz-covariant oscillators -- 9.3. Squeezed states of light -- 9.4. Further notes on squeezed states -- 9.5. O(3, 2) symmetry from Dirac's coupled oscillators -- 9.6. Canonical and non-canonical transformations from the coupled oscillators -- 9.7. Entropy and the expanding Wigner phase space

10. Special relativity from quantum mechanics? -- 10.1. Definition of the problem -- 10.2. Symmetries of the single oscillator -- 10.3. Symmetries from two oscillators -- 10.4. Contraction of O(3, 2) to the inhomogeneous Lorentz group

11. Lorentz group in ray optics -- 11.1. The group of ABCD matrices applied to ray optics -- 11.2. Equi-diagonalization of the ABCD matrix -- 11.3. Decomposition of the ABCD matrix -- 11.4. Laser cavities -- 11.5. Composition of lens and translation matrices -- 11.6. Optical beam propagation through multilayers -- 11.7. Camera optics

12. Polarization optics -- 12.1. Jones vectors -- 12.2. Squeeze transformation and phase shift -- 12.3. Rotation of the polarization axes -- 12.4. The SL(2, c) group content of polarization optics -- 12.5. Optical activities -- 12.6. Correspondence to space-time symmetries -- 12.7. More optical filters from E(2)-like groups

13. Poincaré sphere -- 13.1. Decoherence in polarization optics -- 13.2. Coherency matrix -- 13.3. Poincaré sphere -- 13.4. Two concentric Poincaré spheres -- 13.5. Symmetries derivable from the Poincaré sphere -- 13.6. O(3, 2) symmetry for energy couplings -- 13.7. Entropy problem

Appendix A. Physics as art of synthesis -- A.1. Illustration of Hume, Kant, and Hegel -- A.2. Kant and Einstein -- A.3. Kantianism and Taoism -- A.4. Einstein and Hegel.

Sommario/riassunto

This book explains the Lorentz group in a language familiar to physicists, namely in terms of two-by-two matrices. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group applicable to the four-dimensional Minkowski space is still very strange to most physicists. However, it



plays an essential role in a wide swathe of physics and is becoming the essential language for modern and rapidly developing fields. The first edition was primarily based on applications in high-energy physics developed during the latter half of the 20th Century, and the application of the same set of mathematical tools to optical sciences. In this new edition, the authors have added five new chapters to deal with emerging new problems in physics, such as quantum optics, information theory, and fundamental issues in physics including the question of whether quantum mechanics and special relativity are consistent with each other, or whether these two disciplines can be derived from the same set of equations.