1.

Record Nr.

UNINA9910150621803321

Autore

Pimsleur

Titolo

Pimsleur Spanish Level 1 : Learn to Speak and Understand Latin American Spanish with Pimsleur Language Programs

Pubbl/distr/stampa

: Pimsleur (Simon & Schuster)

ISBN

1-4423-1358-7

Lingua di pubblicazione

Inglese

Formato

Musica

Livello bibliografico

Monografia

Sommario/riassunto

Spanish is the official language of Spain and 21 Latin American countries, and is an official language of the U.N. Pimsleur's Spanish teaches an educated Latin American Spanish, with speakers from Colombia and Argentina in levels I-III, and from Mexico in level IV.The Pimsleur® Method: the easiest, fastest way to learn a new language. Completely portable, easily downloadable, and lots of fun.Youll be speaking and understanding in no time flat! Spanish Phase 1, Lessons 1-30 includes 15 hours of spoken language practice and one hour of reading instruction in thirty, 30-minute lessons.In the first 10 lessons, youll cover the basics: saying hello, asking for or giving information, scheduling a meal or a meeting, asking for or giving basic directions, and much more. Youll be able to handle minimum courtesy requirements, understand much of what you hear, and be understood at a beginning level, but with nearnative pronunciation skills.In the next 10 lessons, youll build on what youve learned. Expand your menu, increase your scheduling abilities from general to specific, start to deal with currency and exchanging money, refine your conversations and add over a hundred new vocabulary items. Youll understand more of what you hear, and be able to participate with speech that is smoother and more confident.In the final 10 lessons of Phase 1, youll be speaking and understanding at an intermediate level. In this phase, more directions are given in the target language, which moves your learning to a whole new plane. Lessons include shopping, visiting



friends, going to a restaurant, plans for the evening, car trips, and talking about family. Youll be able to speak comfortably about things that happened in the past and make plans for the future.Reading Lessons are included at the end of Unit 30 to provide you with an introduction to reading Spanish. These lessons, which total about one hour, are designed to teach you to sound out words with correct pronunciation and accent. A Reading Booklet to be used with the audio lessons is also included in PDF format.

2.

Record Nr.

UNINA9911007033603321

Autore

Singh Rajiv

Titolo

Cable Based and Wireless Charging Systems for Electric Vehicles : Technology and Control, Management and Grid Integration

Pubbl/distr/stampa

Stevenage : , : Institution of Engineering & Technology, , 2022

©2021

ISBN

1-83724-595-9

1-5231-4264-2

1-83953-179-7

Edizione

[1st ed.]

Descrizione fisica

1 online resource (413 pages)

Collana

Transportation

Altri autori (Persone)

SanjeevikumarPadmanaban <1978->

DwivediSanjeet Kumar

MolinasMarta

BlaabjergFrede

Disciplina

629.2293

Soggetti

Electric vehicles - Batteries

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the editors -- About the editors -- 1   Charging stations and standards -- 1.1   Introduction -- 1.2   Conductive charging of EVs -- 1.2.1   EV charging infrastructure -- 1.2.2   Integration of EV with power grid -- 1.2.3   International standards and regulations -- 1.3   Inductive charging of EVs -- 1.3.1   Need for inductive charging of EV -- 1.3.2   Modes of IPT --



1.3.3   Operating principle of IPT -- 1.3.4   Static inductive charging -- 1.3.5   Dynamic inductive charging -- 1.3.6   Bidirectional power flow -- 1.3.7   International standards and regulations -- 1.4   Conclusion -- References -- 2   Grid impact of static and dynamic inductive charging and its mitigation through effective management -- 2.1   Introduction -- 2.2   Tool for estimating the demand for fast inductive charging stations -- 2.2.1   Estimation tool for static inductive charging -- 2.2.2   Estimation tool for dynamic inductive charging -- 2.3   Impact of inductive charging on the distribution grid -- 2.3.1   Impact of static inductive charging on the grid -- 2.3.2   Impact of dynamic inductive charging on the grid -- 2.4   RES and inductive charging -- 2.5   EMS for inductive charging of EVs -- 2.5.1   'Global' demand response services -- 2.5.2   'Local' demand response services at the substation level -- 2.6   Conclusions -- References -- 3   Wireless power transfer in EVs during motion -- 3.1   Introduction -- 3.2   WPT systems: basic theories and applications -- 3.3   System modeling -- 3.4   Circuit and parameter design of the system -- 3.4.1   Standards for WPT system -- 3.4.2   Types of transmitter and receiver coils -- 3.4.3   Types of compensation circuits -- 3.4.4   Parameter design methods -- 3.4.5   Considerations for soft-switching of inverter -- 3.5   Control system for DWC.

3.5.1   Load voltage and power regulation -- 3.5.2   Tuning of operating frequency -- 3.5.3   Load impedance matching -- 3.6   Future trends -- 3.6.1   Integration of WPT system and renewable energy systems -- 3.6.2   Vehicle to grid connection -- 3.6.3   V2V power transfer -- 3.6.4   Integration of WPT system and motor drive -- 3.7   Conclusion -- References -- 4   Considerations on dynamic inductive charging: optimizing the energy transfer at a high efficiency and experimental implementation -- 4.1   Introduction -- 4.2   Differences among static and dynamic inductive charging -- 4.2.1   Analysis of a dynamic inductive charging system -- 4.2.2   Bifurcation in dynamic inductive charging -- 4.2.3   Self-inductance variations in dynamic inductive charging -- 4.3   Optimizing the power transfer and the efficiency in dynamic inductive charging -- 4.4   Control system in dynamic inductive charging -- 4.4.1   Primary side control -- 4.4.2   Secondary side control -- 4.5   Application of the optimization problem and the control system in a circular magnetic coupler -- 4.5.1   Application of the optimization problem -- 4.5.2   Simulation of the applied control -- 4.6   Experimental validation of the proposed optimization and control scheme -- 4.6.1   Implementation of the magnetic coupler -- 4.6.2   Application of the proposed optimization method in the implemented magnetic coupler -- 4.6.3   Implementation of the inverter and the control system -- 4.7   Conclusions -- References -- 5   Converter classification, analysis, and control issues with EV -- 5.1   Introduction -- 5.2   State of art of power converters used for EV application -- 5.3   Quadratic converters -- 5.4   Design example of converter for HEV/EV -- 5.4.1   Working principle of bidirectional converter -- 5.4.2   Steady-state analysis -- 5.4.3   Passive components design.

5.4.4   Small-signal analysis -- 5.5   Simulation and experimental verifications -- 5.6   EV drives and control -- 5.7   Conclusion -- References -- 6   Reducing grid dependency of EV charging using renewable and storage systems -- 6.1   EV charging system -- 6.1.1   EV charger topologies -- 6.1.2   EV charging/discharging strategies -- 6.2   Integration of EV charging-home solar PV system -- 6.2.1   Operation modes of EVC-HSP system -- 6.2.2   Control strategy of EVC-HSP system -- 6.2.3   Simulation results of EVC-HSP system -- 6.2.4   Experimental results of EVC-HSP system -- 6.2.5   Summary



designing of an EVC-HSP system -- 6.3   Level 3 - fast-charging infrastructure with solar PV and energy storage -- 6.3.1   Power converter for FCI -- 6.3.2   Control diagram for FCI -- 6.3.3   Simulation results for FCI -- 6.3.4   Summary designing of an FCI -- 6.4   Conclusions -- References -- 7   Optimal charge control strategies of EVs for enhancement of battery life and lowering the charging cost -- 7.1   Introduction -- 7.2   Integration of EVs in power systems -- 7.2.1   EV chargers -- 7.2.2   EV batteries -- 7.3   Charge/discharge control strategies of EVs -- 7.3.1   Configuration for the optimal charging/discharging strategies of EVs -- 7.3.2   Development of the analytical models of EVs -- 7.4   Optimal control strategy for integration of EVs to enhance battery life and lower the charging cost -- 7.4.1   Optimal EV charging control strategy -- 7.4.2   Simulation results and discussions -- 7.5   Conclusion -- References -- 8   Energy management strategies in microgrids with EV and wind generators -- 8.1   Introduction -- 8.2   Day-ahead MG EMS considering EVs -- 8.2.1   Effects of EV's charging/discharging strategies on the EMS -- 8.2.2   Objective functions and constraints for MG-EMS equipped EVs -- 8.2.3   Multi-objective optimization.

8.2.4   Uncertainty modeling -- 8.3   Real-time MG energy management -- 8.4   MG Energy management with EVs, seawater desalination, and RESs: a case study -- 8.4.1   Overview of the proposed MG -- 8.4.2   Mathematical modeling and proposed algorithm -- 8.4.3   Numerical results -- 8.4.4   Comparative studies -- 8.5   Conclusion -- References -- 9   Optimal energy management strategies for integrating renewable sources and EVs into microgrids -- 9.1   Introduction -- 9.2   Architecture of microgrids -- 9.2.1   Microgrid classification -- 9.2.2   Microgrid components -- 9.3   Roles of EVs in microgrids -- 9.3.1   Smoothing renewable generation -- 9.3.2   Economic benefits -- 9.3.3   Power/energy reserve -- 9.3.4   Mitigating load consumption -- 9.3.5   Reliability improvement -- 9.3.6   Scheduling power exchange -- 9.3.7   Peak shaving -- 9.3.8   Frequency regulation using EVs -- 9.4   Energy management system of microgrids -- 9.4.1   Problem identification -- 9.4.2   EMS strategies for microgrids with EVs -- 9.5   Conclusions -- References -- 10   Charging infrastructure layout and planning for plug-­in electric vehicles -- 10.1   Introduction -- 10.2   Electric vehicle supply equipment technology -- 10.3   Basic EVSE components -- 10.3.1   EVSE -- 10.3.2   Electric vehicle connector -- 10.3.3   Electric vehicle inlet -- 10.4   PEV battery systems -- 10.4.1   Battery technology-a power unit of EV -- 10.5   Charging system -- 10.5.1   Options for electric vehicle supply equipment -- 10.6   Battery charger -- 10.7   EVSE charger classifications -- 10.8   EVSE signaling and communications -- 10.9   Vehicle-to-grid -- 10.10   Wireless charging -- 10.10.1   Inductive and resonant technologies -- 10.10.2   Research on wireless charging -- 10.11   Vehicle design -- 10.11.1   Society of automotive engineers -- 10.12   Innovative charging solutions.

10.12.1   Solar charging -- 10.12.2   Development hindrances in EVSE infrastructure expansion -- 10.12.3   Governmental awareness -- 10.12.4   Financial surprises -- 10.12.5   Standards -- 10.13   Site visit and evaluation and selection -- 10.14   Planning and selection of charging station -- 10.15   A few initiatives and recommendation for accelerating the development of EVSE infrastructure -- 10.16   Feasibility of accelerating EVSE installation -- 10.17   Conclusion and recommendations -- 10.17.1   Key recommendations -- References -- 11   Power loss and thermal



modeling of charger circuit for reliability enhancement of EV charging systems -- 11.1    Introduction -- 11.2    Power electronic converters in EVs -- 11.3    Modulation and analytical power loss model of power electronic converters -- 11.3.1   Conduction power losses in traction inverters -- 11.3.2   Analytical model of switching power losses -- 11.3.3   Power loss profile in traction inverter -- 11.4    Thermal reliability of power converters -- 11.4.1   Electro-thermal behavior of power IGBT modules -- 11.4.2   Design and FEM analysis of power modules in ANSYS -- 11.4.3   3D thermal model of IGBT modules and thermal coupling -- 11.5    Conclusion -- References -- Index -- Back Cover.

Sommario/riassunto

Electric Vehicles are part of the solution to both reducing urban air pollution and staving off climate change. This book covers the latest in charging technology, both stationary as well as wireless and in-motion. Grid integration, simulations, fast charging, and battery management are also addressed.