| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9911006992703321 |
|
|
Autore |
Adams Steve |
|
|
Titolo |
Foundations of Physics |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Jackson : , : Mercury Learning & Information, , 2019 |
|
©2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781683929680 |
1683929683 |
9781683929697 |
1683929691 |
|
|
|
|
|
|
|
|
Edizione |
[Second edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (807 pages) |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Half-Title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: The Language of Physics -- 1.0 Introduction -- 1.1 The SI System of Units -- 1.1.1 Derived Units -- 1.1.2 Energy -- 1.1.3 Viscosity -- 1.2 Dimensions -- 1.2.1 Method of Dimensions -- 1.3 Scientific Notation, Prefixes, and Significant Figures -- 1.4 Uncertainties -- 1.4.1 Types of Uncertainty -- 1.4.2 Combining Uncertainties -- 1.5 Dealing with Random and Systematic Experimental Errors -- 1.5.1 Random Errors -- 1.5.2 Systematic Errors -- 1.6 Differential Calculus -- 1.6.1 Derivatives and Rates of Change -- 1.6.1.1 Second Derivatives -- 1.6.2 Maximum and Minimum Values -- 1.7 Differential Equations -- 1.8 Integral Calculus -- 1.9 Vectors and Scalars -- 1.9.1 Adding Vectors -- 1.9.2 Resolving Vectors into Components -- 1.9.3 Multiplying Vectors -- 1.9.3.1 Scalar Product -- 1.9.3.2 Vector Product -- 1.10 Symmetry Principles -- 1.11 Exercises -- Chapter 2: Representing and Analyzing Data -- 2.0 Introduction -- 2.1 Experimental Variables -- 2.2 Recording Data -- 2.3 Straight-Line Graphs -- 2.3.1 Interpreting Straight-Line Graphs -- 2.3.2 Analyzing Straight-Line Graphs -- 2.4 Plotting Graphs and Using Error Bars -- 2.4.1 Plotting Graphs by Hand -- 2.4.2 Finding a Gradient from a Straight-Line Graph -- 2.4.3 Using a Spreadsheet Program (e.g., Excel) |
|
|
|
|
|
|
|
|
|
-- 2.4.4 Using Error Bars -- 2.5 Logarithms -- 2.5.1 Logarithmic Scales and Logarithms -- 2.5.2 Using Logarithms -- 2.6 Testing Mathematical Relationships between Variables -- 2.6.1 Direct Proportion -- 2.6.2 Inverse Proportion -- 2.6.3 Inverse-Square Law -- 2.6.4 Power Law -- 2.6.5 Exponential Decay or Growth -- 2.7 Exercises -- Chapter 3: Capturing, Displaying, and Analyzing Motion -- 3.0 Introduction -- 3.1 Motion Terminology -- 3.2 Graphs of Motion. |
3.3 Equations of Motion for Constant Acceleration: The Suvat Equations -- 3.3.1 Derivation 1: From Graphs of Motion -- 3.3.2 Derivation 2: Using Calculus -- 3.4 Projectile Motion -- 3.4.1 Independence of Horizontal and Vertical Components of Motion -- 3.4.2 Parabolic Paths -- 3.4.3 The Range of a Projectile -- 3.5 Equation of Motion -- 3.6 Methods to Capture and Display Graphs of Motion -- 3.6.1 Motion Sensors and Dataloggers -- 3.6.2 Light Gates -- 3.6.3 Mobile Phones and Tablets -- 3.6.3.1 Accelerometer Sensor -- 3.6.3.2 Video Capture -- 3.7 Exercises -- Chapter 4: Forces and Equilibrium -- 4.1 Force as a Vector -- 4.1.1 Free-Body Diagrams -- 4.1.2 Resolving Forces -- 4.1.3 Finding a Resultant Force -- 4.2 Mass, Weight, and Center of Gravity -- 4.2.1 Mass -- 4.2.2 Weight -- 4.2.3 Center of Gravity -- 4.3 Equilibrium of Coplanar Forces -- 4.3.1 Using the Triangle of Forces to Solve Equilibrium Problems -- 4.3.2 Resolving Forces to Solve Equilibrium Problems -- 4.4 Turning Effects of a Force: Moments, Torques, and Couples -- 4.4.1 Moments and Torques -- 4.4.2 Resultant Moment -- 4.4.3 Couples -- 4.4.4 The Principle of Moments -- 4.5 Stability -- 4.5.1 Types of Mechanical Equilibrium -- 4.5.2 Degrees of Stability -- 4.6 Frictional Forces -- 4.6.1 The Origin of Frictional Forces Between Surfaces in Contact -- 4.6.2 Static and Dynamic (Kinetic) Friction -- 4.6.3 The Coefficients of Friction -- 4.6.4 Measuring the Coefficient of Static Friction -- 4.6.5 Measuring the Coefficient of Dynamic (Kinetic) Friction -- 4.7 Exercises -- Chapter 5: Newtonian Mechanics -- 5.0 Introduction -- 5.1 Newton's Laws of Motion -- 5.1.1 Newton's First Law of Motion -- 5.1.2 Galilean Relativity -- 5.1.3 Newton's Second Law of Motion -- 5.1.4 Free Fall -- 5.1.5 Newton's Third Law of Motion -- 5.2 Linear Momentum -- 5.2.1 Newton's Second Law in Terms of Linear Momentum. |
5.2.2 Impulse and Change of Momentum -- 5.2.3 Conservation of Linear Momentum -- 5.3 Work Energy and Power -- 5.3.1 Work -- 5.3.2 Gravitational Potential Energy Changes (Uniform Field) -- 5.3.3 Kinetic Energy -- 5.3.4 The Law of Conservation of Energy -- 5.3.5 Energy and Momentum in a 2D Collision -- 5.3.6 Energy Transfers -- 5.3.7 Power -- 5.4 Energy Resources -- 5.5 Propulsion Systems -- 5.5.1 Jet Propulsion -- 5.5.2 Rockets -- 5.5.3 Radiation Pressure -- 5.6 Frames of Reference -- 5.6.1 The Center of Mass Frame -- 5.6.2 The Galilean Transformation -- 5.7 Theoretical Mechanics -- 5.7.1 Force and Energy -- 5.7.2 Lagrangian Mechanics -- 5.8 Exercises -- Chapter 6: Fluids -- 6.0 Introduction -- 6.1 Hydrostatic Pressure -- 6.1.1 Excess Pressure Caused by a Column of Fluid -- 6.1.2 Atmospheric Pressure -- 6.1.3 Using a Manometer to Measure Pressure Differences -- 6.1.4 Barometers -- 6.1.5 Dams -- 6.2 Buoyancy and Archimedes Principle -- 6.2.1 Buoyancy Forces -- 6.2.2 Archimedes' Principle -- 6.2.3 Flotation -- 6.3 Viscosity -- 6.3.1 The Coefficient of Viscosity -- 6.4 Fluid Flow -- 6.4.1 Laminar and Turbulent Flow -- 6.4.2 The Equation of Continuity -- 6.4.3 Drag Forces in a Fluid -- 6.4.4 Stokes' Law -- 6.4.5 Turbulent Drag -- 6.4.6 The Bernoulli Equation -- 6.4.7 The Bernoulli Effect -- 6.4.8 Viscous Flow Through a Horizontal Pipe - The Poiseuille Equation -- 6.4.9 Measuring the Coefficient of Viscosity -- 6.5 Measuring Fluid Flow Rates -- 6.5.1 A Venturi Meter -- 6.5.2 A Pitot Tube -- 6.6 Exercises -- Chapter 7: Mechanical Properties -- 7.1 |
|
|
|
|
|
|
|
Density -- 7.2 Inter-atomic Forces -- 7.3 Stretching Springs -- 7.3.1 The Spring Constant -- 7.3.2 Springs in Series and in Parallel -- 7.3.3 Elastic Potential Energy (Strain Energy) -- 7.4 Stress and Strain -- 7.4.1 The Young's Modulus -- 7.4.2 Experimental Measurement of Young's Modulus for a Metal Wire. |
7.4.3 Stress Versus Strain Graph for a Ductile Metal -- 7.4.4 Rubber Hysteresis -- 7.5 Material Terminology -- 7.6 Material Types -- 7.7 Exercises -- Chapter 8: Thermal Physics -- 8.0 Introduction -- 8.1 Thermal Equilibrium -- 8.2 Measuring Temperature -- 8.3 Temperature Scales -- 8.4 Heat Transfer Mechanisms -- 8.4.1 Conduction -- 8.4.2 Convection -- 8.4.3 Radiation -- 8.5 Black Body Radiation -- 8.6 Heat Capacities -- 8.6.1 Specific Heat Capacity -- 8.6.2 Molar Heat Capacities of Gases -- 8.6.3 Measuring Specific Heat Capacity -- 8.7 Specific Latent Heat -- 8.8 Exercises -- Chapter 9: Gases -- 9.1 The Gas Laws -- 9.1.0 Introduction -- 9.1.1 Boyle's Law -- 9.1.2 Charles's Law -- 9.1.3 Gay Lussac's Law (The Pressure Law) -- 9.2 The Ideal Gas Equation -- 9.3 The Kinetic Theory of Gases -- 9.3.1 Assumptions of the Kinetic Theory -- 9.3.2 Explaining Gas Pressure -- 9.3.3 Molecular Kinetic Energy and Temperature -- 9.3.4 Molar Heat Capacities of an Ideal Monatomic Gas -- 9.3.5 Equipartition of Energy -- 9.3.6 The Law of Dulong and Petit -- 9.3.7 Graham's Law of Diffusion -- 9.3.8 The Speed of Sound in a Gas -- 9.4 The Maxwell Distribution -- 9.5 The Boltzmann Factor and Activation Processes -- 9.6 The First Law of Thermodynamics -- 9.6.1 Internal Energy -- 9.6.2 Heating, Working, and the First Law of Thermodynamics -- 9.6.3 Work Done by an Ideal Gas -- 9.6.4 Thermodynamic Changes -- 9.7 Heat Engines and Indicator Diagrams -- 9.7.1 What Is a Heat Engine? -- 9.7.2 Indicator Diagrams -- 9.7.3 The Otto Cycle -- 9.7.4 The Diesel Cycle -- 9.8 Exercises -- Chapter 10: Statistical Thermodynamics and the Second Law -- 10.0 Introduction -- 10.1 Reversible and Irreversible Processes -- 10.2 The Second Law of Thermodynamics as a Macroscopic Principle -- 10.2.1 Macroscopic Statements of the Second Law -- 10.2.2 Heat Transfer and Entropy. |
10.2.3 Entropy and Maximum Efficiency of a Heat Engine -- 10.3 Entropy and Number of Ways -- 10.3.1 Macro-state and Micro-states -- 10.3.2 Entropy and Number of Ways -- 10.3.3 Poincaré Recurrence -- 10.4 What Is Temperature? -- 10.5 Absolute Zero and Absolute Entropy -- 10.5.1 Entropy at Absolute Zero -- 10.5.2 Calculating Absolute Entropy -- 10.5.3 Entropy Changes for an Ideal Gas -- 10.6 Refrigerators and Heat Pumps -- 10.6.1 Refrigerators -- 10.6.2 Heat Pumps -- 10.7 Implications of the Second Law -- 10.7.1 The Second Law, the Arrow of Time, and the Universe -- 10.7.2 The Second Law and Living Things -- 10.7.3 Entropy and Energy Availability -- 10.8 Exercises -- Chapter 11: Oscillations -- 11.0 Oscillations -- 11.1 Capturing and Displaying Oscillatory Motion -- 11.1.1 Graphs and Equations of Displacement, Velocity, and Acceleration -- 11.1.2 Phase and Phase Difference -- 11.2 Simple Harmonic Motion -- 11.2.1 Equation of Motion for Simple Harmonic Motion -- 11.2.2 Physical Conditions for Simple Harmonic Motion -- 11.3 The Mass-Spring Oscillator -- 11.4 The Simple Pendulum -- 11.5 Energy in Simple Harmonic Motion -- 11.5.1 Variation of Energy with Time -- 11.5.2 Variation of Energy with Position -- 11.5.3 Damping -- 11.6 Forced Oscillations and Resonance -- 11.7 Exercises -- Chapter 12: Rotational Dynamics -- 12.0 Introduction -- 12.1 Angles -- 12.1.1 Measuring Angles in Radians -- 12.1.2 Small Angle Approximations -- 12.2 Describing Uniform Circular Motion -- 12.2.1 Angular Displacement, Angular Velocity, and Angular Acceleration -- 12.3 Centripetal Acceleration and Centripetal Force -- 12.3.1 Centripetal Acceleration |
|
|
|
|
|
|
|
|
|
-- 12.3.2 Centripetal Force -- 12.3.3 Centripetal Not Centrifugal -- 12.3.4 Moving in Uniform Circular Motion -- 12.4 Circular Motion, Simple Harmonic Motion, and Phasors -- 12.5 Rotational Kinematics. |
12.5.1 Equations for Uniform Angular Acceleration. |
|
|
|
|
|
|
Sommario/riassunto |
|
This updated edition is designed as a self-teaching, calculus-based introduction to the concepts of physics. Numerous examples, applications, and figures provide readers with simple explanations. Standard topics include vectors, conservation of energy, Newton’s Laws, momentum, motion, gravity, relativity, waves, fluid mechanics, circuits, nuclear physics, astrophysics, and more. FEATURES:Designed as a calculus-based, introduction to the key concepts of physicsPractical techniques, including the collection, presentation, analysis and evaluation of data, are discussed in the context of key experiments linked to the theoretical spine of the work |
|
|
|
|
|
|
|
| |