1.

Record Nr.

UNINA9911006885403321

Autore

Leonard Francois <1972->

Titolo

The physics of carbon nanotube devices / / Francois Leonard

Pubbl/distr/stampa

Norwich, NY, : William Andrew, c2009

ISBN

9786612253294

9786612027628

9786612027857

9786612169304

9780815519683

0815519680

9780080947549

0080947549

9781282027855

1282027859

Edizione

[1st edition]

Descrizione fisica

1 online resource (xii, 296 pages)

Collana

Micro & nano technologies

Disciplina

620.5

620.193

Soggetti

Electronic apparatus and appliances - Materials

Nanotubes - Electric properties

Nanotubes - Analysis

Microphysics

Fullerenes - Structure

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front Cover; The Physics of Carbon Nanotube Devices; Copyright Page; Contents; Series Editor's Preface; Preface; Chapter 1. Introduction; 1.1 Structure of Carbon Nanotubes; 1.2 Electronic Properties of Carbon Nanotubes; 1.3 Phonon Spectra; References; Chapter 2. Metallic Carbon Nanotubes for Current Transport; 2.1 Introduction; 2.2 Low Bias Transport; 2.3 High Bias Transport; 2.4 Capacitance and Inductance; References; Chapter 3. Physics of Nanotube/Metal Contacts; 3.1 Introduction; 3.2 End-Bonded Contacts; 3.3 Side Contacts; 3.4 Contacts



to Metallic Carbon Nanotubes

3.5 Metal/Oxide/Nanotube ContactsReferences; Chapter 4. Electronic Devices; 4.1 Introduction; 4.2 Rectifiers; 4.3 Field-Effect Transistors; References; Chapter 5. Electromechanical Devices; 5.1 Bending; 5.2 Uniaxial and Torsional Strain; 5.3 Radial Deformation; 5.4 Devices; References; Chapter 6. Field Emission; 6.1 Introduction; 6.2 Adsorbates; 6.3 Nanotube Arrays; 6.4 Failure Mechanism; 6.5 Devices; References; Chapter 7. Optoelectronic Devices; 7.1 Introduction; 7.2 Optical Properties; 7.3 Photoconductivity; 7.4 Electroluminescence; 7.5 Optical Detection with Functionalized Nanotubes

ReferencesChapter 8. Chemical and Biological Sensors; 8.1 Sensing Mechanisms; 8.2 Liquid Gating; 8.3 Functionalized Nanotubes; References; Index; Micro & Nano Technologies

Sommario/riassunto

Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices. In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology. • Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles • Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. • Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. • Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.