1.

Record Nr.

UNINA9910828530403321

Autore

Black J. L (Joseph Laurence), <1937->

Titolo

Nicholas Karamzin and Russian society in the nineteenth century : a study in Russian political and historical thought / / J. L. Black

Pubbl/distr/stampa

Toronto, [Ontario] ; ; Buffalo, [New York] : , : University of Toronto Press, , 1975

©1975

ISBN

1-4426-3375-1

1-4426-3207-0

Descrizione fisica

1 online resource (281 p.)

Collana

Heritage

Disciplina

947/.07/0924

Soggetti

Political science - Russia - History - 19th century

History

Electronic books.

Russia Historiography

Russia History 1801-1917

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Frontmatter -- Contents -- Acknowledgements -- Transliteration and System of Citing Dates -- Introduction -- I. Creative Writer to Historian 1766 -1800 -- 2. The Sage and Political Pundit 1800 - 3 -- 3. Historian and Man at Court: Karamzin and Russian Society 1803 - 26 -- 4. The History: Textbook for Emperors and Citizens -- 5. The History and Russian Society in the Nineteenth Century -- 6. Karamzin and 'Statist' Thought in Nineteenth-Century Russian Historical Writing -- Conclusion -- Notes -- Glossary of Russian Terms -- Select Bibliography -- Karamzin's Works: English Translations -- Appendix -- Index

Sommario/riassunto

Nicholas Karamzin (1766–1826) was a remarkably active thinker and writer during a time that was trying to all Europeans. A first-hand witness to the French Revolution, Napoleonic suzerainty over Europe, the burning of Moscow, and the Decembrist revolt in St. Petersburg, he presented in his voluminous correspondence and published writings a



world view that recognized the weaknesses of the Russian Empire and at the same time foresaw the dangers of both radical change and rigid autocracy. Russian conservatism owes much to this man, even though he would have agreed with very few of those who came after him and were called conservative: he supported autocracy, but was committed to enlightenment; he abhorred constitutions. The fact that his writing had lasting significance has rarely been challenged, but the social and political nature of that contribution has never before been demonstrated. Previous studies of Karamzin have dealt with his literary career. This monograph focuses on the final third of his life, on his career at court (1816–26) and on the cultural heritage he left to the Russian Empire. As the historian of Russia most widely read by his and later generations, his historical interpretations mirrored and helped shape the image Russians had of themselves. Professor Black’s study of Karamzin is crucial to any examination of Russia’s enlightenment, conservatism, historical writing, and national self-consciousness.

2.

Record Nr.

UNINA9910830442803321

Autore

Kannatey-Asibu E.

Titolo

Principles of laser materials processing : developments and applications / / Elijah, Jr. Kannatey-Asibu

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , [2023]

©2023

ISBN

1-119-88163-3

1-119-88161-7

Edizione

[Second edition.]

Descrizione fisica

1 online resource (611 pages)

Disciplina

621.366

Soggetti

Lasers - Industrial applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- PREFACE TO THE SECOND EDITION -- PREFACE TO THE FIRST EDITION -- ABOUT THE COMPANION WEBSITE -- Part I Principles of Industrial Lasers -- Chapter 1 Laser Background -- 1.1 Laser Generation -- 1.1.1 Atomic



Transitions -- 1.1.2 Lifetime -- 1.1.3 Optical Absorption -- 1.1.4 Population Inversion -- 1.1.5 Threshold Gain -- 1.1.6 Two‐Photon Absorption -- 1.2 Optical Resonators -- 1.2.1 Standing Waves In A Rectangular Cavity -- 1.2.2 Planar Resonators -- 1.2.3 Confocal Resonators -- 1.2.4 Concentric Resonators -- 1.3 Laser Pumping -- 1.3.1 Optical Pumping -- 1.3.2 Electrical Pumping -- 1.4 System Levels -- 1.4.1 Two‐Level System -- 1.4.2 Three‐Level System -- 1.5 Broadening Mechanisms -- 1.5.1 Line Shape Function -- 1.5.2 Line‐Broadening Mechanisms -- 1.5.3 Comparison of Individual Mechanisms -- 1.6 Beam Modification -- 1.6.1 Quality Factor -- 1.6.2 Q‐Switching -- 1.6.3 Mode Locking -- 1.7 Beam Characteristics -- 1.7.1 Beam Divergence -- 1.7.2 Monochromaticity -- 1.7.3 Beam Coherence -- 1.7.4 Intensity and Brightness -- 1.7.5 Focusing -- 1.8 Summary -- 1.8 Problems -- 1.8 Bibliography -- Chapter 2 Types of Lasers -- 2.1 SOLID‐STATE LASERS -- 2.1.1 The Nd:YAG Laser -- 2.1.2 The Nd:Glass Laser -- 2.2 GAS LASERS -- 2.2.1 Neutral Atom Lasers -- 2.2.2 Ion Lasers -- 2.2.3 Molecular Gas Lasers -- 2.3 SEMICONDUCTOR (DIODE) LASERS -- 2.3.1 Semiconductor Background -- 2.3.2 Semiconductor Lasers -- 2.3.3 Semiconductor Laser Types -- 2.3.4 Low‐Power Diode Lasers -- 2.3.5 High‐Power Diode Lasers -- 2.3.6 Applications of High‐Power Diode Lasers -- 2.4 NEW DEVELOPMENTS IN INDUSTRIAL LASER TECHNOLOGY -- 2.4.1 Slab Lasers -- 2.4.2 Disk Lasers -- 2.4.3 Ultrafast (Femtosecond) Lasers -- 2.4.4 Fiber Lasers -- 2.5 SUMMARY -- 2.5 Problems -- 2.5 Bibliography -- Chapter 3 Beam Delivery -- 3.1 The Electromagnetic Spectrum.

3.2 Birefringence -- 3.3 Brewster Angle -- 3.4 Polarization -- 3.5 Beam Expanders -- 3.6 Beam Splitters -- 3.7 Beam Delivery Systems -- 3.7.1 Conventional Beam Delivery -- 3.7.2 Fiber Optic Systems -- 3.8 Beam Shaping -- 3.8.1 Beam Shaping Using Diffractive Optics -- 3.8.2 Beam Shaping Using Coherent Beam Combining and Optical Phase Array -- 3.9 Summary -- 3.9 PROBLEMS -- 3.9 Bibliography -- Part II Engineering Background -- Chapter 4 Heat and Fluid Flow -- 4.1 Energy Balance During Processing -- 4.2 HEAT FLOW IN THE WORKPIECE -- 4.2.1 Temperature Distribution -- 4.2.2 Peak Temperatures -- 4.2.3 Cooling Rates -- 4.2.4 Gaussian Heat Source -- 4.2.5 The Two‐Temperature Model -- 4.3 FLUID FLOW IN MOLTEN POOL -- 4.3.1 Continuity Equation -- 4.3.2 Navier-Stokes Equations -- 4.3.3 Surface Tension Effect -- 4.3.4 Free Surface Modeling -- 4.4 SUMMARY -- 4.4 Problems -- 4.4 BIBLIOGRAPHY -- Chapter 5 The Microstructure -- 5.1 PROCESS MICROSTRUCTURE -- 5.1.1 Fusion Zone -- 5.1.2 Zone of Partial Melting -- 5.1.3 Heat‐Affected Zone -- 5.2 DISCONTINUITIES -- 5.2.1 Porosity -- 5.2.2 Cracking -- 5.2.3 Lack of Fusion -- 5.2.4 Incomplete Penetration -- 5.2.5 Undercut -- 5.3 SUMMARY -- 5.3 Problems -- 5.3 BIBLIOGRAPHY -- Chapter 6 Solidification -- 6.1 SOLIDIFICATION WITHOUT FLOW -- 6.1.1 Solidification of a Pure Metal -- 6.1.2 Solidification of a Binary Alloy -- 6.2 SOLIDIFICATION WITH FLOW -- 6.2.1 Mushy Fluid -- 6.2.2 Columnar Dendritic Structure -- 6.3 RAPID SOLIDIFICATION -- 6.4 SUMMARY -- 6.4 Problems -- 6.4 Bibliography -- Chapter 7 Residual Stresses and Distortion -- 7.1 CAUSES OF RESIDUAL STRESSES -- 7.1.1 Thermal Stresses -- 7.1.2 Nonuniform Plastic Deformation -- 7.2 BASIC STRESS ANALYSIS -- 7.2.1 Stress-Strain Relations -- 7.2.2 Plane Stress and Plane Strain -- 7.2.2 Solution: -- 7.3 EFFECTS OF RESIDUAL STRESSES -- 7.3.1 Apparent Change in Strength.

7.3.2 Distortion -- 7.4 MEASUREMENT OF RESIDUAL STRESSES -- 7.4.1 Stress Relaxation Techniques -- 7.4.1 Solution: -- 7.4.2 X‐ray Diffraction Technique -- 7.4.3 Neutron Diffraction Technique -- 7.4.4 Residual Stress Equilibrium -- 7.4.4 Solution: -- 7.5 RELIEF OF



RESIDUAL STRESSES AND DISTORTION -- 7.5.1 Thermal Treatments -- 7.5.2 Mechanical Treatments -- 7.6 SUMMARY -- 7.6 Problems -- 7.6 Bibliography -- Part III Laser Materials Processing -- Chapter 8 Background on Laser Processing -- 8.1 System‐Related Parameters -- 8.1.1 Power and Power Density -- 8.1.2 Wavelength and Focusing -- 8.1.3 Beam Mode -- 8.1.4 Beam Form -- 8.1.5 Beam Quality -- 8.1.6 Beam Absorption -- 8.1.7 Beam Alignment -- 8.1.8 Motion Unit -- 8.2 Process Efficiency -- 8.3 Disturbances That Affect Process Quality -- 8.4 General Advantages and Disadvantages of Laser Processing -- 8.4.1 Advantages -- 8.4.2 Disadvantages -- 8.5 Summary -- 8.5 Problems -- 8.5 Bibliography -- Chapter 9 Laser Cutting and Drilling -- 9.1 Laser Cutting -- 9.1.1 Forms of Laser Cutting -- 9.1.2 Components of a Laser Cutting System -- 9.1.3 Processing Conditions -- 9.1.4 Laser Cutting Principles -- 9.1.5 Quality of Cut Part -- 9.1.6 Material Considerations -- 9.1.7 Advantages and Disadvantages of Laser Cutting -- 9.1.8 Specific Comparison with Conventional Processes -- 9.1.9 Special Techniques -- 9.2 Laser Drilling -- 9.2.1 Forms of Laser Drilling -- 9.2.2 Process Parameters -- 9.2.3 Analysis of Material Removal During Drilling -- 9.2.4 Advantages and Disadvantages of Laser Drilling -- 9.2.5 Applications -- 9.3 New Developments -- 9.3.1 Micromachining -- 9.3.2 Laser‐Assisted Machining -- 9.4 Summary -- 9.4 Problems -- 9.4 BIBLIOGRAPHY -- Chapter 10 Laser Welding -- 10.1 Laser Welding Parameters -- 10.1.1 Beam Power and Traverse Speed -- 10.1.2 Effect of Beam Characteristics.

10.1.3 Plasma Formation, Gas Shielding, and Effect of Ambient Pressure -- 10.1.4 Beam Size and Focal Point Location -- 10.1.5 Joint Configuration -- 10.2 Welding Efficiency -- 10.3 Mechanism of Laser Welding -- 10.3.1 Conduction Mode Welding -- 10.3.2 Keyhole Welding -- 10.4 Material Considerations -- 10.4.1 Steels -- 10.4.2 Nonferrous Alloys -- 10.4.3 Ceramic Materials -- 10.4.4 Dissimilar Metals -- 10.5 Weldment Discontinuities -- 10.5.1 Porosity -- 10.5.2 Humping -- 10.6 Advantages and Disadvantages of Laser Welding -- 10.6.1 Advantages -- 10.6.2 Disadvantages -- 10.7 Special Techniques -- 10.7.1 Multiple‐Beam Welding -- 10.7.2 Arc‐Augmented Laser Welding -- 10.7.3 Wobble Welding -- 10.7.4 Remote Laser Welding -- 10.8 Specific Applications -- 10.8.1 Microwelding -- 10.8.2 Laser‐Welded Tailored Blanks -- 10.8.3 Laser Transmission Welding of Plastics -- 10.8.4 Laser Brazing -- 10.9 Summary -- 10.9 Problems -- 10.9 Bibliography -- Chapter 11 Laser Surface Modification -- 11.1 Laser Surface Heat Treatment -- 11.1.1 Important Criteria -- 11.1.2 Key Process Parameters -- 11.1.3 Temperature Field -- 11.1.4 Microstructural Changes in Steels -- 11.1.5 Nonferrous Alloys -- 11.1.6 Hardness Variation -- 11.1.7 Residual Stresses -- 11.1.8 Semiconductors -- 11.1.9 Polymers -- 11.1.10 Advantages and Disadvantages of Laser Surface Treatment -- 11.2 Laser Surface Melting -- 11.3 Laser Direct Metal Deposition -- 11.3.1 Processing Parameters -- 11.3.2 Methods for Depositing the Material -- 11.3.3 Dilution -- 11.3.4 Advantages and Disadvantages of Laser Deposition -- 11.4 Laser Physical Vapor Deposition (LPVD) -- 11.5 Laser Shock Peening -- 11.5.1 Background Analysis -- 11.5.2 Thermal Relaxation at High Temperatures -- 11.5.3 Advantages and Disadvantages of Laser Shock Peening -- 11.5.4 Applications -- 11.6 Laser Texturing -- 11.7 Summary -- 11.7 Problems.

11.7 BIBLIOGRAPHY -- Chapter 12 Laser Forming -- 12.1 Principle of Laser Forming -- 12.2 Process Parameters -- 12.3 Laser‐Forming Mechanisms -- 12.3.1 Temperature Gradient Mechanism -- 12.3.2 Buckling Mechanism -- 12.3.3 Upsetting Mechanism -- 12.3.4



Summary of the Forming Mechanisms -- 12.4 Process Analysis -- 12.5 Advantages and Disadvantages -- 12.5.1 Advantages -- 12.5.2 Disadvantages -- 12.6 Applications -- 12.7 Summary -- 12.7 Problems -- 12.7 Bibliography -- Chapter 13 Additive Manufacturing -- 13.1 Computer‐Aided Design -- 13.1.1 Curve and Surface Design -- 13.1.2 Solid Modeling -- 13.1.3 Software Formats -- 13.1.4 Supports for Part Building -- 13.1.5 Slicing -- 13.2 Part Building -- 13.2.1 Liquid‐Based Systems -- 13.2.2 Powder‐Based Systems -- 13.2.3 Solid‐Based Systems -- 13.2.4 Qualitative Comparison of Some Major Systems -- 13.3 Post‐Processing -- 13.4 Applications -- 13.4.1 Design -- 13.4.2 Engineering, Analysis, and Planning -- 13.4.3 Manufacturing and Tooling -- 13.4.4 Personalized Production -- 13.5 Advantages and Disadvantages -- 13.5.1 Advantages -- 13.5.2 Disadvantages -- 13.6 Summary -- 13.6 Problems -- 13.6 Bibliography -- Chapter 14 Medical and Nanotechnology Applications of Lasers -- 14.1 Medical Applications -- 14.1.1 Medical Devices -- 14.1.2 Therapeutic Applications -- 14.2 Nanotechnology Applications -- 14.2.1 Nanoholes and Grating -- 14.2.2 Nanobumps -- 14.2.3 Laser‐Assisted Nanoimprint Lithography -- 14.3 Summary -- 14.3 Bibliography -- Chapter 15 Sensors for Process Monitoring -- 15.1 Laser Beam Monitoring -- 15.1.1 Beam Power -- 15.1.2 Beam Mode -- 15.1.3 Beam Size -- 15.2 Process Monitoring -- 15.2.1 Acoustic Emission (AE) -- 15.2.2 Acoustic Mirror -- 15.2.3 Audible Sound (AS) Emission -- 15.2.4 Infrared/Ultraviolet (IR/UV) Detection Techniques -- 15.2.5 Optical (Vision) Sensing -- 15.3 Summary -- 15.3 Problems.

15.3 BIBLIOGRAPHY.



3.

Record Nr.

UNINA9911006550703321

Titolo

Nano-optoelectronic sensors and devices : nanophotonics from design to manufacturing / / edited by Ning Xi , King Wai Chiu Lai

Pubbl/distr/stampa

Amsterdam ; ; Boston, : Elsevier/William Andrew, 2011

ISBN

1-283-31106-2

9786613311061

1-4377-3472-3

Edizione

[1st edition]

Descrizione fisica

1 online resource (273 p.)

Collana

Micro & nano technologies series

Altri autori (Persone)

XiNing

LaiKing Wai Chiu

Disciplina

621.36

681.2

Soggetti

Optical detectors

Optoelectronic devices

Nanotechnology

Nanophotonics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front cover; Nano-Optoelectronic Sensors and Devices: Nanophotonics from Design to Manufacturing; Copyright; Table of Contents; Preface; Acknowledgments; About the Editors; List of Contributors; Chapter 1. Introduction; 1.1 Overview; 1.2 Impact of Nanomaterials; 1.3 Challenges and Difficulties in Manufacturing Nanomaterials-Based Devices; 1.3.1 Role of Microfluidics; 1.3.2 Role of Robotic Nanoassembly; 1.4 Summary; References; Chapter 2. Nanomaterials Processing for Device Manufacturing; 2.1 Introduction; 2.2 Characteristics of Carbon Nanotubes

2.3 Classification of Carbon Nanotubes using Microfluidics 2.3.1 Dielectrophoretic Phenomenon on CNTs; 2.3.2 Experimental Results: Separation of Semiconducting CNTs; 2.4 Deposition of CNTs by Microrobotic Workstation; 2.5 Summary; References; Chapter 3. Design and Generation of Dielectrophoretic Forces for Manipulating CarbonNanotubes; 3.1 Overview; 3.2 Dielectrophoretic Force Modeling; 3.2.1 Modeling of Electrorotation for Nanomanipulation; 3.2.2 Dynamic



Modeling of Rotational Motion of Carbon Nanotubes for Intelligent Manufacturing of CNT-Based Devices

3.2.3 Dynamic Effect of Fluid Medium on Nano Particles by Dielectrophoresis 3.3 Theory for Microelectrode and Electric Field Design for Carbon Nanotube Applications 3.3.1 Microelectrode Design; 3.3.2 Theory for Microelectrode Design; 3.4 Electric Field Design; 3.5 Carbon Nanotubes Application -Simulation Results; 3.5.1 Dielectrophoretic Force: Simulation Results; 3.5.2 Electrorotation (Torque): Simulation Results; 3.5.3 Rotational Motion of Carbon Nanotubes: Simulation Results; 3.6 Summary; References; Chapter 4. Atomic Force Microscope-Based Nanorobotic System for Nanoassembly

4.1 Introduction to AFM and Nanomanipulation 4.1.1 AFM's Basic Principle; 4.1.2 Imaging Mode of AFM; 4.1.3 AFM-Based Nanomanipulation; 4.2 AFM-Based Augmented Reality System; 4.2.1 Principle for 3D Nanoforce Feedback; 4.2.2 Principle for Real-Time Visual Feedback Generation; 4.2.3 Experimental Testing and Discussion; A. Nanomanipulation with Augmented Reality System; B. Discussion: Limitations of Augmented Reality System; 4.3 Augmented Reality System Enhanced by Local Scan; 4.3.1 Local Scan Mechanism for Nanoparticle; 4.3.2 Local Scan Mechanism for Nanorod

4.3.3 Nanomanipulation with Local Enhanced Augmented Reality System A. Manipulation of Nanoparticles; B. Manipulation of Nanorods; 4.4 CAD-Guided Automated Nanoassembly; 4.5 Modeling of Nanoenvironments; 4.6 Automated Manipulation of CNT; 4.7 Summary; References; Chapter 5. On-Chip Band Gap Engineering of Carbon Nanotubes; 5.1 Introduction; 5.2 Quantum Electron Transport Model; 5.2.1 Nonequilibrium Green's Functions; 5.2.2 Poisson's Equation and Self-Consistent Algorithm; 5.3 Electrical Breakdown Controller of a CNT; 5.3.1 Extended Kalman Filter for Fault Detection

5.4 Effects of CNT Breakdown

Sommario/riassunto

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and opera