1.

Record Nr.

UNINA9910151628003321

Titolo

Children of the further dark [[electronic resource] ] : the poetry of Christopher Dewdney / / selected with an introduction by Karl E. Jirgens

Pubbl/distr/stampa

Waterloo, Ont., : Wilfrid Laurier University Press, c2007

ISBN

1-55458-715-8

1-280-90802-5

9786610908028

1-55458-102-8

Descrizione fisica

xviii, 58 p

Collana

Laurier poetry series

Altri autori (Persone)

JirgensKarl E

Disciplina

C811/.54

Soggetti

English poetry

English literature

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNIORUON00262726

Titolo

Duo

Pubbl/distr/stampa

[Bruxelles], : Le Grand Miroir

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Collezione

3.

Record Nr.

UNINA9910992791503321

Autore

Liu Fan

Titolo

Advancing Recommender Systems with Graph Convolutional Networks / / by Fan Liu, Liqiang Nie

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031850936

3031850939

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (166 pages)

Altri autori (Persone)

NieLiqiang

Disciplina

025.04

Soggetti

Information storage and retrieval systems

Artificial intelligence

Neural networks (Computer science)

Information Storage and Retrieval

Artificial Intelligence

Mathematical Models of Cognitive Processes and Neural Networks

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preface -- 1) Introduction -- 2) Interest-aware Message-Passing Graph Convolutional Network -- 3) Cluster-based Graph Collaborative Filtering -- 4) Semantic Aspect-aware Graph Convolutional Network -- 5) Attribute-aware Attentive Graph Convolutional Network -- 6) Light Graph Transformer Model -- 7) Research Frontiers.

Sommario/riassunto

This book systematically examines scalability and effectiveness



challenges related to the application of graph convolutional networks (GCNs) in recommender systems. By effectively modeling graph structures, GCNs excel in capturing high-order relationships between users and items, enabling the creation of enriched and expressive representations. The book focuses on two overarching problem categories: the first area deals with problems specific to GCN-based recommendation models, including over-smoothing, noisy neighboring nodes, and interpretability limitations. The second one encompasses broader challenges in recommendation systems that GCN-based methods are particularly well-suited to address as the attribute missing problem or feature misalignment. Through rigorous exploration of these challenges, this book presents innovative GCN-based solutions to push the boundaries of recommender system design. To this end, techniques such as interest-aware message-passing strategy, cluster-based collaborative filtering, semantic aspects extraction, attribute-aware attention mechanisms, and light graph transformer are presented. Each chapter combines theoretical insights with practical implementations and experimental validation, offering a comprehensive resource for researchers, advanced professionals, and graduate students alike.