1.

Record Nr.

UNICASRML0268379

Autore

Mandelbrot, Benoit B.

Titolo

Gaussian self-affinity and fractals : globality, the earth, 1/f noise and R/S / B. Mandelbrot ; includes contributions by F. J. Damerau...[et al.]

Pubbl/distr/stampa

New York [etc.], : Springer, ©2002

ISBN

0387989935

Descrizione fisica

IX, 654 p. : fig. ; 24 cm

Disciplina

514.74

Soggetti

Frattali

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Include riferimenti bibliografici e indice

2.

Record Nr.

UNINA9910987692503321

Autore

Tsironis Giorgos

Titolo

Artificial Intelligence and Complex Dynamical Systems / / by Giorgos Tsironis

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031819469

3031819462

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (391 pages)

Collana

Understanding Complex Systems, , 1860-0840

Disciplina

530.1

Soggetti

System theory

Artificial intelligence

Quantum theory

Quantum electrodynamics

Biophysics

Epidemiology

Complex Systems

Artificial Intelligence

Quantum Physics

Quantum Electrodynamics, Relativistic and Many-body Calculations

Teoria de sistemes

Intel·ligència artificial



Teoria quàntica

Electrodinàmica quàntica

Biofísica

Epidemiologia

Sistemes complexos

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1. Complex systems and machine learning -- Chapter 2. Regression and Classification -- Chapter 3. Data manipulation techniques -- Chapter 4. Artificial neurons and deep learning -- Chapter 5. Powerful neural network architectures -- Chapter 6. Autoencoders and more -- Chapter 7. The Discrete Nonlinear Schr¨odinger Equation -- Chapter 8. Learning Analytical Solutions -- Chapter 9. The targeted energy transfer model -- Chapter 10. Dynamical embedding with autoencoders -- Chapter 11. Chimeras -- Chapter 12. Branching -- Chapter 13. Discrete breathers -- Chapter 14. Quantum targeted transfer with machine learning -- Chapter 15. Learning quantum systems -- Chapter 16. Action potential propagation in the heart -- Chapter 17. Machine learning cardiology -- Chapter 18. Epidemiology with physics informed machine learning -- Chapter 19. Foundations -- Chapter 20. Computational complexity and the butterfly effect.

Sommario/riassunto

This book serves as a comprehensive introduction to nonlinear complex systems through the application of machine learning methods. Artificial intelligence (AI) has affected the foundations of scientific discovery, and can therefore lend itself to developing a better understanding of the unpredictable nature of complex dynamical systems and to predict their future evolution. Utilizing Python code, this book teaches and applies machine learning to topics such as chaotic dynamics and time-series analysis, solitons, breathers, chimeras, nonlinear localization, biomolecular dynamics, and wave propagation in the heart. The consistent integration of methods and models allow for readers to develop a necessary intuition on how to handle complexity through AI. This textbook contains a wealth of expository material, code, and example problems to support and organize academic coursework, allowing the technical nature of these areas of study to become highly accessible. Requiring only a basic background in mathematics and coding in Python, this book is an essential text for a wide array of advanced undergraduate or graduate students in the applied sciences interested in complex systems through the lens of machine learning.