1.

Record Nr.

UNINA9910986133103321

Autore

Arthur Richard T. W

Titolo

Leibniz on the Foundations of the Differential Calculus / / by Richard T. W. Arthur, David Rabouin

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025

ISBN

9783031772597

3031772598

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (409 pages)

Collana

Frontiers in the History of Science, , 2662-2572

Altri autori (Persone)

RabouinDavid

Disciplina

510.9

Soggetti

Mathematics

History

Science - History

Mathematics - Philosophy

History of Mathematical Sciences

History of Science

Philosophy of Mathematics

Història de la ciència

Història de la matemàtica

Filosofia de la matemàtica

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

- Part I Interpretive Essay -- Chapter 1. Introduction -- Chapter 2. On the Metaphysics of the Continuum (1669-1676) -- Chapter 3. Mathematical Fictions -- Chapter 4. De Quadratura Arithmetica (DQA) -- Chapter 5. Infinitesimals and Existence after 1676 -- Chapter 6. Leibniz’s Mature Justifications of the Calculus -- Chapter 7. Conclusion -- Part II A selection of translations of key texts -- Chapter 8: Texts for chapter 2, On the Metaphysics of the Continuum (1669-1676) -- Chapter 9: Texts for chapter 3, Mathematical Fictions -- Chapter 10: Texts for chapter 4, De Quadratura Arithmetica (DQA) -- Chapter 11: Texts for chapter 5, Infinitesimals and Existence after 1676 -- Chapter 12: Texts for chapter 6, Leibniz’s Mature Justifications of the Calculus.



Sommario/riassunto

This monograph presents an interpretive essay on the foundations of Leibniz’s calculus, accompanied by key texts in English translation. The essay examines Leibniz's evolving views on infinitesimals and infinite numbers, tracing their development from his early metaphysical ideas to his mature justifications of the calculus. Leibniz first proposed treating infinitesimals as fictions in the 1670s, in line with the mathematical practices of his time, where abstract concepts could be used in calculations without implying their existence. By 1676, he rejected their status as quantities, yet continued to refine his arguments on this topic into the 1690s. The essay concludes with an analysis of Leibniz’s defense of his calculus in the early 18th century, showing how his later works naturally extended from earlier insights. This monograph will be a valuable resource for scholars and students of Leibniz and the history of science.