1.

Record Nr.

UNINA9910986132803321

Autore

Ludkovski Michael

Titolo

Gaussian Process Models for Quantitative Finance / / by Michael Ludkovski, Jimmy Risk

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031808746

3031808746

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (323 pages)

Collana

SpringerBriefs in Quantitative Finance, , 2192-7014

Altri autori (Persone)

RiskJimmy

Disciplina

519

Soggetti

Social sciences - Mathematics

Stochastic processes

Machine learning

Mathematics in Business, Economics and Finance

Stochastic Processes

Machine Learning

Stochastic Systems and Control

Ciències socials

Matemàtica

Processos estocàstics

Aprenentatge automàtic

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.

Sommario/riassunto

This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP



methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.