1.

Record Nr.

UNICAMPANIAVAN0052523

Autore

Margaris, Angelo

Titolo

First order mathematical logic / by Angelo Margaris

Pubbl/distr/stampa

New York, : Dover, 1990

ISBN

978-04-86662-69-5

Descrizione fisica

X, 211 p. ; 22 cm

Soggetti

03-XX - Mathematical logic and foundations [MSC 2020]

03Bxx - General logic [MSC 2020]

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910983377403321

Autore

Marcondes Francisco S

Titolo

Natural Language Analytics with Generative Large-Language Models : A Practical Approach with Ollama and Open-Source LLMs / / by Francisco S. Marcondes, Adelino Gala, Renata Magalhães, Fernando Perez de Britto, Dalila Durães, Paulo Novais

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031766312

3031766318

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (117 pages)

Collana

SpringerBriefs in Computer Science, , 2191-5776

Altri autori (Persone)

GalaAdelino

MagalhãesRenata

Perez de BrittoFernando

DurãesDalila

NovaisPaulo

Disciplina

006.35

Soggetti

Natural language processing (Computer science)

Artificial intelligence - Data processing

Artificial intelligence

Business - Data processing

Computational linguistics

Machine learning

Natural Language Processing (NLP)

Data Science



Artificial Intelligence

Business Analytics

Computational Linguistics

Machine Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Natural Language Analytics -- Using Ollama -- Generative Prompt Engineering -- Case Study: LLM-based Anxiety Climate Index -- Conclusion.

Sommario/riassunto

This book explores the application of generative Large Language Models (LLMs) for extracting and analyzing data from natural language artefacts. Unlike traditional uses of LLMs, such as translation and summarization, this book focuses on utilizing these models to convert unstructured text into data that can be processed through the data science pipeline to generate actionable insights. The content is designed for professionals in diverse fields including cognitive science, linguistics, management, and information systems. It combines insights from both industry and academia to provide a comprehensive understanding of how LLMs can be effectively used for natural language analytics (NLA). The book details practical methodologies for implementing LLMs locally using open-source tools, ensuring data privacy and feasibility without the need for expensive infrastructure. Key topics include interpretant, mindset and cultural analysis, emphasizing the use of LLMs to derive soft data—qualitative information crucial for nuanced decision-making. The text also outlines the technical aspects of LLMs, including their architecture, token embeddings, and the differences between encoder-based and decoder-based models. By providing a case study and practical examples, the authors show how LLMs can be used to meet various analytical needs, making this book a valuable resource for anyone looking to integrate advanced natural language processing techniques into their data analysis workflows.