1.

Record Nr.

UNISA990002063920203316

Autore

AZZALI, Giampiero

Titolo

Inadempimento e frode nelle pubbliche forniture / Giampiero Azzali

Pubbl/distr/stampa

Padova : CEDAM, 1981

Descrizione fisica

XVI, 222 p. ; 24 cm

Collana

Collana di studi penalistici . Nuova serie ; 30

Disciplina

345

Soggetti

Frode in commercio

Contratto di fornitura - Dolo

Collocazione

XXVI.1. Coll. 6/ 29 (Coll. DU 30)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910480014503321

Autore

Bosch Siegfried

Titolo

Néron Models [[electronic resource] /] / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990

ISBN

3-642-51438-3

Edizione

[1st ed. 1990.]

Descrizione fisica

1 online resource (X, 328 p.)

Collana

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, , 0071-1136 ; ; 21

Disciplina

516.35

Soggetti

Algebraic geometry

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models



-- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron’s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron’s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case.

Sommario/riassunto

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.



3.

Record Nr.

UNINA9910978260403321

Autore

Mathen Carissima

Titolo

Decoding the Court : Legal Data Insights from the Supreme Court of Canada

Pubbl/distr/stampa

Oxford : , : Taylor & Francis Group, , 2024

©2024

ISBN

9781003279112

1003279112

9781040016657

1040016650

Edizione

[1st ed.]

Descrizione fisica

1 online resource (158 pages)

Altri autori (Persone)

AlschnerWolfgang

MacDonnellVanessa

Disciplina

347.012

Soggetti

Judicial process - Canada

Courts - Canada

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

A bird's-eye view of the Canadian Supreme Court / Wolfgang Alschner & Keenan MacNeal -- Four stories about Canada's separation of powers doctrine / Vanessa MacDonnell & Keenan MacNeal -- Using network citation analysis to reveal precedential archetypes at the Supreme Court of Canada / Wolfgang Alschner & Isabelle St-Hilaire -- Navigating judicial disagreement / Carissima Mathen, Keenan MacNeal, Stephen Bindman & Kelley Humber -- Bilingualism at the Supreme Court of Canada : quantifying citations to English, French, and bilingual doctrinal sources / Terry Skolnik & Keenan MacNeal -- The Supreme Court of Canada leave project : a dataset and machine learning model for predicting leave application outcomes / Paul-Erik Veel & Katie Glowach -- The Supreme Court of Canada and mainstreamed judicial analytics / Jena McGill & Amy Salyzyn.

Sommario/riassunto

This edited collection combines state-of-the-art legal data analytics with in-depth doctrinal analysis to study the Supreme Court of Canada (SCC), Canada's top court.