1.

Record Nr.

UNINA9910974790403321

Titolo

Case-based reasoning : processes, suitability and applications / / Antonia M. Leeland, editor

Pubbl/distr/stampa

Hauppauge, N.Y., : Nova Science Publishers, c2011

ISBN

1-61728-814-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (183 p.)

Collana

Engineering tools, techniques and tables

Altri autori (Persone)

LeelandAntonia M

Disciplina

153.4/3

Soggetti

Case-based reasoning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- CASE-BASED REASONING: PROCESSES, SUITABILITY AND APPLICATIONS -- CASE-BASED REASONING: PROCESSES, SUITABILITY AND APPLICATIONS -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1  CASE-BASED REASONING INTEGRATIONS: APPROACHES AND APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. TRENDS IN INTEGRATIONS OF CBR  WITH OTHER INTELLIGENT METHODS -- 3. REPRESENTATIVE SYSTEMS -- 3.1 Sequential Processing Approaches -- 3.1.1 Loosely coupled sequence -- 3.1.2 Tightly coupled sequence -- 3.2. Co-processing Approaches -- 3.2.1 Cooperation oriented -- 3.2.1.1 Explicit reasoning control -- 3.2.1.2 Implicit reasoning control -- 3.2.2 Reconciliation oriented -- 3.3 Embedded Processing -- 4. COMBINATION OF CBR WITH NEURULES -- 4.1 Syntax and Semantics -- 4.2 Indexing and Hybrid Inference -- CONCLUSIONS -- REFERENCES -- Chapter 2  APPLYING IMPROVED CASE INDEXING AND RETRIEVING USING EX-POST INFORMATION IN CORPORATE BANKRUPTCY PREDICTION -- ABSTRACT -- INTRODUCTION -- LITERATURE REVIEW -- Distance Metric -- 1. Linear distance metrics -- 2. Value difference metric -- Feature selection &amp -- determining number of cases -- Weighting features -- PROPOSED MODEL -- RESEARCH DATA AND EXPERIMENTS -- Step 1. Selecting Observation Firm Set -- Step 2. Categorizing Financial Dimensions -- Step 3. Identifying and Obtaining Candidate Financial Ratios -- Step 4. Selecting Final Financial Ratios -- Step 5. Calculating Efficiencies Using DEA for the Data Set -- Step 6.



Determining Case Base -- Step 7. Dividing Experiment Sets -- Step 8. Calculating Feature Weights -- Step 9. Measuring Similarity -- Step 10. Updating Case Base -- RESULT AND ANALYSIS -- Experiment 1 -- Experiment 2 -- Unsupervised vs. Supervised -- CONCLUSION -- REFERENCES -- Chapter 3  CASE-BASED REASONING: HISTORY, METHODOLOGY AND DEVELOPMENT TRENDS -- ABSTRACT.

INTRODUCTION -- HISTORY OF CBR -- THE STEPS OF THE CBR PROCESS -- MAIN TYPES OF CBR METHODS -- Case-Based Reasoning -- Analogy-Based Reasoning -- Exemplar-Based Reasoning -- Instance-Based Reasoning -- Memory-Based Reasoning -- 5. TOOLS AND APPLICATIONS OF CBR -- 6. DEVELOPMENT TRENDS OF  CBR METHODS AND APPLICATIONS -- CONCLUSION -- REFERENCES -- Chapter 4  A TEMPORAL CASE-BASED  PROCEDURE FOR CANCELLATION FORECASTING:  A CASE STUDY -- ABSTRACT -- 1. INTRODUCTION -- 2. CANCELLATION CURVES -- 2.1. Canceling Patterns before Departure -- 2.2. Cancellation Patterns at Departure -- 3. MODELS -- 3.1. Case-Based Predicting Model (CBP) -- 3.1.1. Similarity evaluation -- 3.1.2. Sample selection -- 3.1.3. Prediction generation -- 3.1.4. Parameter search -- 3.2. Regression Models -- 3.3. Pick up Models -- 4. EMPIRICAL STUDY -- 4.1. The Best Number of Selection -- 4.2. Comparison with a Naïve CBP Variant -- 4.3. Comparison with Four Benchmarks -- 4.4. Distributions of the Estimated Parameters -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 5  PROVISION OF SAFETY FOR TECHNOLOGICAL SYSTEMS WITH THE AID OF CASE-BASED REASONING -- ABSTRACT -- 1. INTRODUCTION -- 2. CONCEPTUALIZATION OF DATA AND KNOWLEDGE -- 3. THE CASE-BASED APPROACH -- 4. IMPLEMENTATION OF THE SOFTWARE -- 5. EXAMPLE OF APPLICATION OF THE SOFTWARE -- CONCLUSION -- REFERENCES -- Chapter 6  MATHEMATIZING THE CASE-BASED  REASONING PROCESS -- ABSTRACT -- INTRODUCTION -- THE MARKOV MODEL -- MEASURING THE EFFECTIVENESS OF A CBR SYSTEM -- FUZZY SETS -- A FUZZY MODEL FOR THE  REPRESENTATION OF A CBR SYSTEM -- AN APPLICATION OF THE FUZZY MODEL -- CONCLUSION -- REFERENCES -- Chapter 7  PROTOTYPE-BASED REASONING FOR DIAGNOSIS OF DYSMORPHIC SYNDROMES -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Diagnostic Support for Dysmorphic Syndromes -- 1.2. Other Systems.

1.3. Case-Based Reasoning and Prototypicality Measures -- 2. DIAGNOSIS OF DYSMORPHIC SYNDROMES -- 2.1. Prototypicality Measures -- 2.2. Adaptation Rules -- 3. RESULTS -- 3.1. Application of Adaptation Rules -- 3.2. Application of Adaptation Rules -- 3.3. Application of Automatically Acquired Adaptation Rules -- 4. CONCLUSION -- REFERENCES -- Chapter 8  NEW APPROACH OF CASE-BASED REASONING* -- ABSTRACT -- 1. INTRODUCTION -- 2. NEGOTIATION -- 3. DESCRIPTION OF OUR APPROACH -- 3.1. The 3R Model -- Retrieve -- Reuse -- Retain -- 3.2. Real Estate Negotiation According to the 3R Model -- Case -- Case base -- 3.3. The 3R Model Cycle -- 3.3.1. Retrieve -- A) Retrieve 1: Optimal weights search -- B) Optimal weights specification -- B-1) Initialization of the weights -- B-2) Calculation of the similarity distance -- B-3) Adjustment of the weights -- B-4) Calculation of the optimal weights -- B) Retrieve 2: The search for the similar case -- A) Computation of the Similarity Distance in Relation to the Target -- B) Similar Case Retrieval -- 3.3.3. Retain -- 4. MODEL VALIDATION -- 5. CONCLUSION -- REFERENCES -- Commentary  FUZZY SETS IN CASE-BASED REASONING -- INDEX.

Sommario/riassunto

Case-based reasoning (CBR) is the process of solving new problems based on the solutions of similar past problems. This book presents research in the field of CBR including business predication researches



of corporate failure using CBR, and mathematising the Case-Based Reasoning process.