1.

Record Nr.

UNINA9910974453903321

Autore

Whitney Cynthia Kolb <1941->

Titolo

Algebraic chemistry : applications and origins / / Cynthia Kolb Whitney

Pubbl/distr/stampa

New York, : Nova Publishers, c2013

ISBN

1-62257-866-X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (386 p.)

Collana

Chemical engineering methods and technology

Mathematics research developments

Disciplina

541.01/512

Soggetti

Molecular dynamics - Mathematics

Ionization constants - Measurement

Quantum chemistry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- ALGEBRAIC CHEMISTRY -- ALGEBRAIC CHEMISTRY -- CONTENTS -- PREFACE -- INTRODUCTION -- 1. THE BACKGROUND -- 2. THIS BOOK -- 2.1. About Part I -- 2.2. About Part II -- 2.3. About Part III -- 2.4. About So Much More -- 3. THE CHARACTERS -- PART I. CHEMISTRY AS  NUMERICAL REGULARITIES -- PROLOG TO PART I -- ABOUT PATTERNS -- REFERENCES -- APPENDIX: THE PERIODIC TABLE, MENDELEYEV STYLE -- IONIZATION POTENTIALS OF ATOMS -- ABSTRACT -- INTRODUCTION -- 1. OBSERVED BEHAVIOR OF IONIZATION POTENTIALS  OF ALL ORDERS -- 2. DETAILS ON BEHAVIOR OF FIRST-ORDER  IONIZATION POTENTIALS -- CONCLUSION -- ACKNOWLEDGMENTS -- APPENDIX: BASIC DATA ON FIRST-ORDER IONIZATION POTENTIALS OF ATOMS -- IONIZATION POTENTIALS OF IONS -- ABSTRACT -- INTRODUCTION -- 1. MODEL DEVELOPMENT -- 2. SYMBOLIC FORMULAE -- CONCLUSION -- AN INVITATION TO READERS -- APPENDIX: FORMULAE AND EVALUATIONS  FOR SEQUENTIAL IONIZATIONS OF SELECTED ELEMENTS -- 1. Hydrogen -- 2. Helium -- 3. Lithium -- 4. Beryllium -- 5. Boron -- 6. Carbon -- 7. Nitrogen -- 8. Oxygen -- 9. Fluorine -- 10. Neon -- 11. Sodium -- 12. Magnesium -- 13. Aluminum -- 14. Silicon -- 15. Phosphorus -- 16. Sulfur -- 17. Chlorine -- 18. Argon -- 19. Potassium -- 21. Scandium -- 24. Chromium -- 26. Iron -- 27. Cobalt -- 29. Copper -- 30. Zinc



-- 31. Gallium -- 32. Germanium -- 33. Arsenic -- 35. Bromine -- 36. Krypton -- 37. Rubidium -- 39. Yttrium -- 45. Rhodium -- 46. Palladium -- 47. Silver -- 48. Cadmium -- 49. Indium -- 50. Tin -- 51. Antimony -- 54. Xenon -- 55. Cesium -- 57. Lanthanum -- 74. Tungsten -- 78. Platinum -- 79. Gold -- 80. Mercury -- 81. Thallium -- 82. Lead -- 83. Bismuth -- 84. Polonium -- 86. Radon -- 87. Francium -- 89. Actinium -- IONS AND STATES OF MATTER -- ABSTRACT -- INTRODUCTION -- 1. STATE CHANGE TEMPER ATURES  AND FIRST ORDER IONIZATION POTENTIALS -- 2. RELATIONSHIPS BETWEEN SOME ELEMENT PAIRS.

2.1. Hydrogen and Helium -- 2.2. Lithium and Beryllium -- 2.3. Nitrogen and Oxygen -- 3. STATES OF MATTER AND STATES OF IONIZATION -- 3.1. Melting Points -- 3.2. Boiling Points -- 3.3. Phase Diagrams -- 4. HOW TEMPARATURE DRIVES POPULATIONS  OF IONIZATION STATES -- 4.1. Boltzmann Factors -- 4.2. The Planck Black-Body Spectrum -- 4.3. A Mechanism for Driving Macroscopic State Changes -- CONCLUSION -- ACKNOWLEDGMENTS -- A RESPITE FOR READERS -- REFERENCES -- SINGULAR ELEMENTS -- ABSTRACT -- INTRODUCTION -- 1. KEYSTONE ELEMENTS -- 2. NOBLE GASSES -- 2.1. Helium -- 2.2. Neon -- 3. HALOGENS -- 3.1. Bromine -- 4. METALS -- 4.1. Mercury -- 4.2. Gallium -- CONCLUSION -- A PROJECT FOR READERS -- REFERENCE -- TYPICAL MOLECULES -- ABSTRACT -- INTRODUCTION -- 1. GENERAL INFORMATION -- 2. DIATOMIC MOLECULES -- 3. TRIATOMIC MOLECULES -- 4. HYDROCARBONS -- 4.1. Methane CH4 -- 4.2. Ethane C2H6 -- 4.3. Propane C3H8 -- 4.4. Butane C4H10 -- 4.5. Pentane C5H12 -- 4.6. Hexane C6H14 -- 4.7. Septane, Octane, and Beyond -- 4.8. A Brief Revisit to Hydrocarbons and States of Matter -- CONCLUSION -- A PROJECT FOR READERS -- IMPORTANT REACTIONS -- ABSTRACT -- INTRODUCTION -- 1. HYDROCARBON COMBUSTION -- 2. HYDROCARBON COMBUSTION IN STEPS -- 2.1. Steps in Methane Combustion -- 2.2. Energies from Steps in Methane Combustion -- 2.3. Focus on the First Step of Methane Combustion -- 3. FIRST STEP OF COMBUSTION FOR OTHER HYDROCARBONS -- 3.1. Hexane Combustion, First Step 2 -- 3.2. Septane Combustion, First Step H -- 3.3. Octane Combustion, First Step -- 3.4. Real Combustion, First Step -- 4. FIRST STEP OF COMBUSTION FOR A FUEL MIX -- 5. THE NECESSARY POST SCRIPT TO  HYDROCARBON COMBUSTION -- 5.1. Rhodium -- 5.2. Palladium -- 5.3. Platinium -- CONCLUSION -- A PROJECT FOR READERS -- REFERENCES -- CATALYSIS OF CHEMICAL REACTIONS -- ABSTRACT -- INTRODUCTION -- 1. THE EXAMPLE REACTION.

1.1. The Full Reaction -- 1.2. The Textbook Catalyzed Reaction Steps -- 1.3. Why the Textbook Story Didn't Work -- 2. A NEW ATTACK ON THE PROBLEM -- 2.1. The First Catalyzed Reaction Step -- 2.2. The Second Catalyzed Reaction Step -- 2.3. Define More Reaction Steps? -- 3. QUESTIONING THE ASSUMED REACTION -- 4. NATURAL CATALYSIS -- CONCLUSION -- A PROJECT FOR READERS -- ACKNOWLEDGMENTS -- REFERENCES -- ELECTRO-CHEMISTRY IN POWER GENERATION -- ABSTRACT -- INTRODUCTION -- 1. THE ORIGINS OF CONTROVERSY -- 1.1. Lack of Neutrons -- 1.2. Variability of Excess Heat -- 1.3. Lack of Credible Theory -- 2. THE NUMERICAL INFORMATION NEEDED -- 3. WHAT HAPPENS IN THE ELECTROLYTIC SOLUTION -- 4. WHAT HAPPENS AT THE CATHODE -- CONCLUSION -- A PROJECT FOR READERS -- ACKNOWLEDGMENTS -- REFERENCE -- PART II. CHEMISTRY AS  QUANTUM MECHANICS -- PROLOG TO PART II -- REFERENCES -- HYDROGEN AS THE PROTOTYPICAL ATOM -- ABSTRACT -- INTRODUCTION -- 1. RADIATION FROM ACCELERATING CHARGES -- 2. TORQUING IN THE HYDROGEN ATOM -- 3. EVEN MORE RADIATION --



4. BALANCE AT THE GROUND STATE -- 5. EXCITED STATES -- CONCLUSION -- REFERENCES -- GENERAL CHARGE PAIRS -- ABSTRACT -- INTRODUCTION -- 1. HYDROGEN -- 2. POSITRONIUM -- 3. THE PROTON PAIR -- 4. THE ELECTRON PAIR -- CONCLUSION -- REFERENCE -- ELECTRON RINGS  AND STRUCTURES THEREOF -- ABSTRACT -- INTRODUCTION -- 1. COMFORTABLE ELEMENTS -- 1.1. A Ring of Three Electrons -- 1.2. Two Rings of Three Electrons -- 1.3. A Ring of Five Electrons -- 1.4. Two Rings of Five Electrons -- 1.5. A Ring of Seven Electrons -- 1.6. Two Rings of Seven Electrons -- 2. UNCOMFORTABLE ELEMENTS -- 3. PECULIAR ELEMENTS -- CONCLUSION -- APPENDIX -- A PROJECT FOR READERS -- ACKNOWLEDGMENTS -- REFERENCES -- EXPLOSIONS AND EXPLANATIONS -- ABSTRACT -- INTRODUCTION -- 1. LOG-LINEARITY OF IONIZATION POTENTIALS.

2. ON THE MEANING OF HIGHER-ORDER  IONIZATION POTENTIALS -- 2.1. Observations -- 2.2. Explanations -- 3. ON THE MEANING OF FIRST-ORDER  IONIZATION POTENTIALS -- 3.1. Full Periods -- 3.2. Sub-Period Levels -- 3.3. Sub-Period Slopes -- 4. ON THE UTILITY OF HIGHER-ORDER  IONIZATION POTENTIALS IN CHEMISTRY -- CONCLUSION -- REFERENCES -- PART III. QUANTUM MECHANICS AS ELECTRODYNAMICS -- PROLOG TO PART III -- REFERENCE -- PHOTONS AND MAXWELL'S EQUATIONS -- ABSTRACT -- INTRODUCTION -- 1. APPROACH -- 2. E'S AND B'S FOR ONE OF THE TWO ORIENTATIONS -- 3. WAVEFORM EVOLUTION -- 4. WAVEFORM ENERGY DENSITIES -- 5. RELATIVE MOTION -- 6. IMPLICATIONS FOR FIELDS DELIVERED -- 7. IMPLICATIONS FOR RELATIVITY THEORY -- CONCLUSION -- ACKNOWLEDGMENTS -- APPENDIX -- [A] Theory of the Photon -- The Concept of Convergence -- REFERENCES -- ON THE INVARIANCE OF MAXWELL'S EQUATIONS -- ABSTRACT -- INTRODUCTION -- 1. EXTENDED TENSOR NOTATION, WITH MATRIX DEMONSTRATIONS -- 3. GALILEAN TRANSFORMATION  OF MAXWELL'S EQUATIONS -- CONCLUSION -- REFERENCES -- CONCLUSION -- 1. SOME HISTORY TO RECALL -- 2. THE TASK TO ADDRESS -- 3. SPECIFIC TOOLS TO USE -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX.

Sommario/riassunto

Algebraic chemistry is based on numerical patterns observed in readily available data about ionization potentials of atoms, and on a physical model that interpolates and extrapolates from that data to situations for which data is not readily available, such as ionization potentials for atoms that are already ionized, or corresponding energy increments involved in adding, rather than subtracting, electrons. This Book presents an approach to chemistry that permits numerical evaluation of many chemical scenarios without use of much computation power. Everything here can be worked out with a hand calculator. The approach thus makes numerical analysis of scenarios in chemistry feasible for students, or up-coming researchers, or retirees, who work with minimal financial support.