1.

Record Nr.

UNINA9910971215103321

Titolo

Materials for high-temperature semiconductor devices / / Committee on Materials for High-Temperature Semiconductor Devices, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council

Pubbl/distr/stampa

Washington, D.C., : National Academy Press, c1995

ISBN

9786610192762

9780309176057

0309176050

9781280192760

1280192763

9780309596534

030959653X

9780585084695

0585084696

Edizione

[1st ed.]

Descrizione fisica

1 online resource (135 p.)

Disciplina

621.381/2

Soggetti

Semiconductors

Materials at high temperatures

Wide gap semiconductors

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"NMAB-474."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Materials For High-Temperature Semiconductor Devices -- Copyright -- Abstract -- Preface -- Acknowledgements -- Contents -- Executive Summary -- GENERAL CONCLUSIONS AND RECOMMENDATIONS -- Temperature Ranges -- U.S. Competitiveness -- Demonstration Technologies -- Funding Strategy -- MATERIALS-SPECIFIC CONCLUSIONS AND RECOMMENDATIONS -- Silicon Carbide -- Nitrides -- Diamond -- Packaging -- 1 Background -- SURVEY I: APPLICATIONS OF HIGH-TEMPERATURE ELECTRONICS BY INDUSTRY -- Automotive -- Aerospace -- Gas Turbine Engines -- Other Aerospace Applications -- Space Vehicles And Exploration -- Nuclear Power -- Petroleum



Exploration -- Industrial Process Control -- Power Electronics -- SURVEY II: APPLICATIONS BY THERMAL ENVIRONMENT -- SURVEY III: HIGH-TEMPERATURE ELECTORNIS APPLICATIONS BY COMPLEXITY -- SUMMARY -- 2 State Of The Art Of Wide Bandgap Materials -- SILICON CARBIDE -- Materials Description And Properties -- Methods Of Fabrication -- Bulk Growth -- Background -- Current Status -- Epitaxial Growth -- Background -- CVD Of α-SiC Epitaxial Films -- SiC Epitaxy In The c-Axis Direction -- SiC Epitaxy In The a-Axis Direction -- Hetero-Epitaxial Growth Of 3C-SiC Films -- Other Epitaxial Processes -- Summary -- NITRIDE MATERIALS -- Properties -- Crystal Growth -- DIAMOND -- Materials Description And Properties -- Methods Of Synthesis And Characterization -- Synthesis -- Characterization -- Diamond Processing -- 3 Device Physics: Behavior at Elevated Temperatures -- HIGH-TEMPERATURE EFFECTS: FUNDAMENTAL, MATERIALS-RELATED PROPERTIES -- Carrier Mobilities -- Intrinsic Carrier Concentrations: Dependence on Bandgap Energy and Temperature -- PREDICTING HIGH-TEMPERATURE-DEVICE PERFORMANCE: MATERIALS-RELATED FIGURES OF MERIT -- Device Physics At High Temperatures -- Junction Leakage: p-n Junctions And Diodes -- Schottky Leakage -- Threshold Voltage Shifts.

Choice Of High-Temperature-Device Technologies -- 4 Generic Technical Issues Associated With Materials For High-Temperature Semiconductors -- ELECTRICAL CONTACTS -- Schottky Contacts To SiC -- Ohmic Contacts To SiC -- Ohmic Contacts To GaN -- DOPING AND IMPLANTATION -- Doping Of SiC -- Doping Of GaN -- Doping Of AlN -- Doping Of Diamond -- GATE OXIDES AND INSULATORS -- Gate Oxides And Insulators For SiC -- Gate Oxides And Insulators For The Nitrides -- Gate Oxides And Insulators For Diamond -- ETCHING -- Etching Of SiC -- Etching Of The Nitrides: GaN And AlN -- Etching Of Diamond -- DEFECT ENGINEERING AND CONTROL -- YIELD -- DEVICE RELIABILITY -- 5 High-Temperature Electronic Packaging -- CHIP PACKAGING -- SUBSTRATES -- THICK-FILM AND THIN-FILM METALLIZATION -- COMPONENT ATTACHMENT -- INTERCONNECTION -- SECOND-LEVEL PACKAGING -- SUMMARY -- 6 Device Testing For High-Temperature Electronic Materials -- SHORT-TERM CONSTANT-TEMPERATURE TESTS -- CONSTANT-TEMPERATURE LIFE TEST -- THERMAL-CYCLING TESTS -- FUTURE REQUIREMENTS FOR HIGH-TEMPERATURE TESTING -- 7 Conclusions And Recommendations -- GENERAL CONCLUSIONS AND RECOMMENDATIONS -- Temperature Ranges -- U.S. Competitiveness -- Demonstration Technologies -- Funding Strategy -- MATERIALS-SPECIFIC CONCLUSIONS AND RECOMMENDATIONS -- Silicon Carbide -- Nitrides -- Diamond -- Packaging -- References -- Appendix A: Silicon As A High-Temperature Material -- HIGH-TEMPERATURE OPERATION OF SILICON CIRCUITS -- Bipolar Analog Circuits -- Bipolar Digital Circuits -- FET Analog Circuits -- Digital Cmos -- DIELECTRIC ISOLATION TECHNOLOGY -- Wafer Bonding -- SIMOX -- Lateral Isolation -- APPLICATIONS TO DEVICE TECHNOLOGY -- Bipolar-Junction-Transistor Applications In SOI Technology -- Cmos Applications In SOI -- REFERENCES -- Appendix B: Gallium Arsenide As A High-Temperature Material.

STATUS OF COMMERCIAL VLSI GAAS DEVICES FOR HIGH-TEMPERATURE ELECTRONICS -- APPROACHES FOR IMPROVING GAAS IC HIGH-TEMPERATURE LIMITS -- CONCLUSIONS -- REFERENCES -- Appendix C: High-Temperature Microwave Devices -- BASIC DEVICE TYPES -- Bipolar Junction Transistors -- Static Induction Transistors -- Junction Field Effect Transistors -- Metal-Semiconductor Field Effect Transistors -- Impact Avalanche Transit-Time Diodes -- EXPECTATIONS FOR WIDE



BANDGAP MESFETS -- Current-Voltage Curves -- Power And Efficiency -- Mesfet Gain -- Thermal Properties Of SiC MESFETs -- Wide Bandgap Mesfets At Elevated Temperatures -- Silicon Carbide -- Gallium Nitride -- Diamond -- REFERENCES -- Appendix D: Biographical Sketches Of Committee Members.

Sommario/riassunto

Major benefits to system architecture would result if cooling systems for components could be eliminated without compromising performance. This book surveys the state-of-the-art for the three major wide bandgap materials (silicon carbide, nitrides, and diamond), assesses the national and international efforts to develop these materials, identifies the technical barriers to their development and manufacture, determines the criteria for successfully packaging and integrating these devices into existing systems, and recommends future research priorities.