|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910970865403321 |
|
|
Titolo |
Analytical and numerical aspects of partial differential equations : notes of a lecture series / / editors, Etienne Emmrich, Petra Wittbold |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Walter De Gruyter, c2009 |
|
|
|
|
|
|
|
ISBN |
|
9786612296475 |
9781282296473 |
1282296477 |
9783110212105 |
3110212102 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (296 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter Proceedings in Mathematics |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
EmmrichEtienne |
WittboldPetra |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Mathematical analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"This book grew out of a series of lectures at the Technische Universitat Berlin held by young mathematicians from France ... during the academic years 2007-2009."--Pref. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Table of contents -- S. N. Kruzhkov's lectures on first-order quasilinear PDEs -- Adaptive semi-Lagrangian schemes for Vlasov equations -- Coupling of a scalar conservation law with a parabolic problem -- Standing waves in nonlinear Schrödinger equations -- Multiscale methods coupling atomistic and continuum mechanics: some examples of mathematical analysis -- Maximal regularity and applications to PDEs -- Backmatter |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This text contains a series of self-contained reviews on the state of the art in different areas of partial differential equations, presented by French mathematicians. Topics include qualitative properties of reaction-diffusion equations, multiscale methods coupling atomistic and continuum mechanics, adaptive semi-Lagrangian schemes for the Vlasov-Poisson equation, and coupling of scalar conservation laws. |
|
|
|
|
|
|
|