| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910724400503321 |
|
|
Autore |
Rittersma Rengenier C. |
|
|
Titolo |
Egmont da capo : eine mythogenetische Studie / / Rengenier C. Rittersma |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Münster : , : Waxmann Verlag, , 2009 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (347 pages) |
|
|
|
|
|
|
Collana |
|
Niederlande-Studien ; ; 44 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Statesmen - Netherlands |
Netherlands History Charles V, 1506-1555 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Sommario/riassunto |
|
Was ist ein Mythos? Wie setzt man sich ein ewiges Denkmal? Mythen ähneln gewissermaßen Knödeln: Stehen sie dampfend auf dem Tisch, ist es fast unmöglich, das exakte Verhältnis der Zutaten zu ermitteln, das die Klöße gerade noch geschmeidig und doch nicht mehlig macht. Ebenso rätselhaft ist die Entstehung von Mythen, aber sie finden in ,modernen' Gesellschaften nach wie vor reißenden Absatz. Die vorliegende Studie versucht erstmals, anhand des Nachlebens des enthaupteten Grafen Lamoraal von Egmont (1522-1568), der Frage nachzugehen, warum und wie eine historische Gestalt zu einer mythischen Figur avancieren konnte. Was machte ihn unsterblich? Wie und wieso erreichte der Name Egmont ein durch die Jahrhunderte hindurch vom Mittelmeerraum bis in die DDR nachhallendes Echo? In diesem Buch we ... |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910970819103321 |
|
|
Autore |
Kawaguchi Shu |
|
|
Titolo |
Effective Faithful Tropicalizations Associated to Linear Systems on Curves |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (122 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.270 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Geometry, Algebraic |
Tropical geometry |
Algebraic geometry -- Tropical geometry -- Tropical geometry |
Algebraic geometry -- Arithmetic problems. Diophantine geometry -- Rigid analytic geometry |
Algebraic geometry -- Cycles and subschemes -- Divisors, linear systems, invertible sheaves |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Chapter 1. Introduction -- Notation and Conventions -- Chapter 2. Preliminaries -- 2.1. Semistable models and semistable pairs -- 2.2. Berkovich spaces -- 2.3. Skeleta associated to strictly semistable models -- 2.4. Skeleta associated to strictly semistable pairs -- 2.5. Some properties of skeleta -- 2.6. Tropical geometry -- 2.7. Faithful tropicalization -- Chapter 3. Good models -- 3.1. Good models of -- 3.2. Theory of divisors on Λ-metric graphs -- 3.3. Weighted Λ-metric graphs -- 3.4. Skeleton as a weighted Λ-metric graph (with a finite graph structure) -- 3.5. Construction of a model of ( , ) -- Chapter 4. Unimodular tropicalization of minimal skeleta for ≥2 -- 4.1. Useful lemmas -- 4.2. Fundamental vertical divisors -- 4.3. Stepwise vertical divisors -- 4.4. Edge-base sections and edge-unimodularity sections -- 4.5. Unimodular tropicalization -- Chapter 5. Faithful tropicalization of minimal skeleta for ≥2 -- Notation and terminology of Chapter 5 -- 5.1. Separating points on an edge of |
|
|
|
|
|
|
|
|
|
|
|
connected type -- 5.2. Separating points in different edges -- 5.3. Separating vertices -- 5.4. Faithful tropicalization of the minimal skeleton -- Chapter 6. Faithful tropicalization of minimal skeleta in low genera -- 6.1. Genus 0 case -- 6.2. Genus 1 case -- Chapter 7. Faithful tropicalization of arbitrary skeleta -- Notation and terminology of Chapter 7 -- 7.1. Geodesic paths -- 7.2. Stepwise vertical divisor associated to a point in ( ) -- 7.3. Base sections and -unimodularity sections -- 7.4. Good model -- 7.5. Proof of Proposition 7.8 -- 7.6. Proof of Theorem 1.2 -- 7.7. Upper bound for the dimension of the target space -- Chapter 8. Complementary results -- 8.1. Theorem 1.2 is optimal for curves in low genera -- 8.2. A very ample line bundle that does not admit a faithful tropicalization -- 8.3. Comparison with [42]. |
Chapter 9. Limit of tropicalizations by polynomials of a bounded degree -- 9.1. Statement of the result -- 9.2. Polynomial of bounded degree that separates two points -- 9.3. Proof of Theorem 1.7 -- Bibliography -- Subject Index -- Symbol Index -- Back Cover. |
|
|
|
|
|
|
Sommario/riassunto |
|
"For a connected smooth projective curve of genus g, global sections of any line bundle L with deg(L) 2g 1 give an embedding of the curve into projective space. We consider an analogous statement for a Berkovich skeleton in nonarchimedean geometry: We replace projective space by tropical projective space, and an embedding by a homeomorphism onto its image preserving integral structures (or equivalently, since is a curve, an isometry), which is called a faithful tropicalization. Let be an algebraically closed field which is complete with respect to a nontrivial nonarchimedean value. Suppose that is defined over and has genus g 2 and that is a skeleton (that is allowed to have ends) of the analytification an of in the sense of Berkovich. We show that if deg(L) 3g 1, then global sections of L give a faithful tropicalization of into tropical projective space. As an application, when Y is a suitable affine curve, we describe the analytification Y an as the limit of tropicalizations of an effectively bounded degree"-- |
|
|
|
|
|
|
|
| |