1.

Record Nr.

UNINA9910970223903321

Autore

Palu Yann

Titolo

Non-Kissing Complexes and Tau-Tilting for Gentle Algebras

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2021

ISBN

9781470469122

147046912X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (110 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.274

Classificazione

16G1016G2005E1005E4506B1052B11

Altri autori (Persone)

PilaudVincent

PlamondonPierre-Guy

Disciplina

512/.46

512.46

Soggetti

Combinatorial analysis

Representations of algebras

Partially ordered sets

Congruence lattices

Convex polytopes

Associative rings and algebras -- Representation theory of rings and algebras -- Representations of Artinian rings

Associative rings and algebras -- Representation theory of rings and algebras -- Representations of quivers and partially ordered sets

Combinatorics -- Algebraic combinatorics -- Combinatorial aspects of representation theory

Combinatorics -- Algebraic combinatorics -- Combinatorial aspects of simplicial complexes

Order, lattices, ordered algebraic structures -- Lattices -- Ideals, congruence relations

Convex and discrete geometry -- Polytopes and polyhedra -- $n$-dimensional polytopes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"November 2021, volume 274, number 1343."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

String modules -- The non-kissing complex -- The non-kissing lattice -- The non-kissing associahedron.

Sommario/riassunto

"We interpret the support -tilting complex of any gentle bound quiver as the non-kissing complex of walks on its blossoming quiver.



Particularly relevant examples were previously studied for quivers defined by a subset of the grid or by a dissection of a polygon. We then focus on the case when the non-kissing complex is finite. We show that the graph of increasing flips on its facets is the Hasse diagram of a congruence-uniform lattice. Finally, we study its g-vector fan and prove that it is the normal fan of a non-kissing associahedron"--

2.

Record Nr.

UNINA9910222252103321

Titolo

The ICCA journal on community corrections

Pubbl/distr/stampa

Kingston, NJ, : Civic Research Institute

ISSN

2158-382X

Disciplina

364.6

Soggetti

Community-based corrections - United States

Community-based corrections

Periodicals.

United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico