1.

Record Nr.

UNINA990001096540403321

Autore

Johnson, Curtis D. <Drew ; <1939-

Titolo

Microprocessor-based process control / Curtis D. Johnson

Pubbl/distr/stampa

Englewood Cliffs [N.J.] : Prentice-Hall, 1984

ISBN

0-13-580654-2

Descrizione fisica

X, 259 p. : ill. ; 24 cm

Disciplina

510.78

Locazione

FI1

DINEL

Collocazione

8B-235

10 D III 420

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910969611203321

Autore

Cristini Vittorio <1970->

Titolo

Multiscale modeling of cancer : an integrated experimental and mathematical modeling approach / / Vittorio Cristini, John Lowengrub

Pubbl/distr/stampa

Cambridge : , : Cambridge University Press, , 2010

ISBN

1-107-21140-9

1-282-77073-X

9786612770739

0-511-90148-8

0-511-79912-8

0-511-90227-1

0-511-79772-9

0-511-78145-8

0-511-90069-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (xix, 278 pages) : digital, PDF file(s)

Disciplina

362.196/994

Soggetti

Cancer - Research - Mathematical models

Multiscale modeling

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Part I. Theory: 1. Introduction; 2. Biological background; 3. Continuum tumor modeling: single phase; 4. Analysis and calibration of single-phase continuum tumor models; 5. Continuum tumor modeling: multiphase; 6. Discrete cell modeling; 7. Hybrid continuum -- discrete models; 8. Numerical schemes -- Part II. Applications: 9. Continuum tumor modeling: a multidisciplinary approach; 10. Agent-based cell modeling: application to breast cancer.

Sommario/riassunto

Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological



background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.