|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910968798403321 |
|
|
Autore |
Thomas Adam R |
|
|
Titolo |
The Irreducible Subgroups of Exceptional Algebraic Groups |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2020 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (204 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 1307 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Linear algebraic groups |
Representations of groups |
Embeddings (Mathematics) |
Maximal subgroups |
Group theory and generalizations -- Linear algebraic groups and related topics -- Representation theory for linear algebraic groups |
Group theory and generalizations -- Linear algebraic groups and related topics -- Linear algebraic groups over arbitrary fields |
Group theory and generalizations -- Linear algebraic groups and related topics -- Exceptional groups |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"November 2020, volume 268, number 1307 (fourth of 6 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Strategy for the proofs of theorems 5.1-9.1 -- Irreducible subgroups of G2 -- Irreducible subgroups of F4 -- Irreducible subgroups of G = E6 -- Irreducible subgroups of G = E7 -- Irreducible subgroups of G = E8 -- Corollaries -- Tables for theorem 1 -- Composition factors for G-irreducible subgroups -- Composition factors for the action of Levi subgroups. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"This monograph is a contribution to the study of the subgroup structure of exceptional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we complete the classification of irreducible connected subgroups of exceptional |
|
|
|
|