| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910467344203321 |
|
|
Autore |
Křen Jan |
|
|
Titolo |
Čtvrt století střední Evropy : visegrádské země v globálním příběhu let 1992-2017 / / Jan Křen |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Praha] : Karolinum, , [2019] |
|
©2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (366 pages) |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
contemporary history |
change of political system |
foreign policy |
European Union membership |
Visegrad countries |
Slovakia |
Czechia |
Poland |
Hungary |
Electronic books. |
Europe, Central History 1989- |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNIORUON00344066 |
|
|
Autore |
SADOVEANU, Mihail |
|
|
Titolo |
Baltagul : Roman / M. Sadoveanu ; prefata si note de Cornel Regman |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bucuresti, : Editura Tineretului, 1966 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
3. |
Record Nr. |
UNINA9910968798403321 |
|
|
Autore |
Thomas Adam R |
|
|
Titolo |
The Irreducible Subgroups of Exceptional Algebraic Groups |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2020 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (204 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 1307 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Linear algebraic groups |
Representations of groups |
Embeddings (Mathematics) |
Maximal subgroups |
Group theory and generalizations -- Linear algebraic groups and related topics -- Representation theory for linear algebraic groups |
Group theory and generalizations -- Linear algebraic groups and related topics -- Linear algebraic groups over arbitrary fields |
Group theory and generalizations -- Linear algebraic groups and related topics -- Exceptional groups |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
Note generali |
|
"November 2020, volume 268, number 1307 (fourth of 6 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Strategy for the proofs of theorems 5.1-9.1 -- Irreducible subgroups of G2 -- Irreducible subgroups of F4 -- Irreducible subgroups of G = E6 -- Irreducible subgroups of G = E7 -- Irreducible subgroups of G = E8 -- Corollaries -- Tables for theorem 1 -- Composition factors for G-irreducible subgroups -- Composition factors for the action of Levi subgroups. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"This monograph is a contribution to the study of the subgroup structure of exceptional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we complete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected subgroup X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G"-- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. |
Record Nr. |
UNINA9910160308803321 |
|
|
Autore |
Moss Christopher Hawthorne |
|
|
Titolo |
Beloved Pilgrim |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Tallahassee : , : Dreamspinner Press, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (304 p.) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
At the time of the earliest Crusades, young noblewoman Elisabeth longs to be the person she's always known is hidden inside. When her twin brother perishes from a fever, Elisabeth takes his identity to live as a man, a knight. As Elias, he travels to the Holy Land, to adventure, passion, death, and a lesson that honor is sometimes found in unexpected places. Elias must pass among knights and soldiers, survive furious battle, deadly privations, moral uncertainty, and treachery if he'll have any chance of returning to his newfound love in the magnificent city of Constantinople. |
|
|
|
|
|
|
|
| |