1.

Record Nr.

UNISA996394129803316

Autore

Whorwood Thomas <1618 or 19-1680.>

Titolo

Argumentum ad hominem, or, An argument against Protestants, who hold that papists, quà tales, or, Living and dying papists may be saved [[electronic resource] /] / by Thomas Whorwood

Pubbl/distr/stampa

London, : Printed for Nathaniel Ranew ..., 1679

Descrizione fisica

[16], 17, [5] p

Soggetti

Protestantism

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Reproduction of original in Huntington Library.

Sommario/riassunto

eebo-0113



2.

Record Nr.

UNINA9910968709503321

Autore

Sturmfels Bernd <1962->

Titolo

Algorithms in Invariant Theory / / by Bernd Sturmfels

Pubbl/distr/stampa

Vienna : , : Springer Vienna : , : Imprint : Springer, , 1993

ISBN

3-7091-4368-3

9786611491277

Edizione

[1st ed. 1993.]

Descrizione fisica

1 online resource (204 p.)

Collana

Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, , 2197-8409

Disciplina

004

Soggetti

Machine theory

Discrete mathematics

Artificial intelligence

Computer science - Mathematics

Logic, Symbolic and mathematical

Geometry, Algebraic

Formal Languages and Automata Theory

Discrete Mathematics

Artificial Intelligence

Symbolic and Algebraic Manipulation

Mathematical Logic and Foundations

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Invariant theory of finite groups -- Bracket algebra and projective geometry -- Invariants of the general linear group.

Sommario/riassunto

J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central



problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.