| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996394129803316 |
|
|
Autore |
Whorwood Thomas <1618 or 19-1680.> |
|
|
Titolo |
Argumentum ad hominem, or, An argument against Protestants, who hold that papists, quà tales, or, Living and dying papists may be saved [[electronic resource] /] / by Thomas Whorwood |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : Printed for Nathaniel Ranew ..., 1679 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Reproduction of original in Huntington Library. |
|
|
|
|
|
|
Sommario/riassunto |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910968709503321 |
|
|
Autore |
Sturmfels Bernd <1962-> |
|
|
Titolo |
Algorithms in Invariant Theory / / by Bernd Sturmfels |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Vienna : , : Springer Vienna : , : Imprint : Springer, , 1993 |
|
|
|
|
|
|
|
ISBN |
|
3-7091-4368-3 |
9786611491277 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 1993.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (204 p.) |
|
|
|
|
|
|
Collana |
|
Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, , 2197-8409 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Machine theory |
Discrete mathematics |
Artificial intelligence |
Computer science - Mathematics |
Logic, Symbolic and mathematical |
Geometry, Algebraic |
Formal Languages and Automata Theory |
Discrete Mathematics |
Artificial Intelligence |
Symbolic and Algebraic Manipulation |
Mathematical Logic and Foundations |
Algebraic Geometry |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Invariant theory of finite groups -- Bracket algebra and projective geometry -- Invariants of the general linear group. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
J. Kung and G.-C. Rota, in their 1984 paper, write: “Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics”. The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central |
|
|
|
|
|
|
|
|
|
|
problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this “classical and new” area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems. |
|
|
|
|
|
| |