1.

Record Nr.

UNINA9910967813003321

Autore

Lu Xin Biao

Titolo

Synchronization in complex networks / / Xin Biao Lu and Bu Zhi Qin

Pubbl/distr/stampa

New York, : Nova Science Publisher's, c2011

ISBN

9781611222609

1611222605

Edizione

[1st ed.]

Descrizione fisica

1 online resource (147 p.)

Collana

Computer networks.

Altri autori (Persone)

QinBu Zhi

Disciplina

004.6/5

Soggetti

Synchronous data transmission systems

Computer network architectures

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. [123]-133) and index.

Nota di contenuto

Intro -- SYNCHRONIZATION IN  COMPLEX NETWORKS -- SYNCHRONIZATION IN  COMPLEX NETWORKS -- CONTENTS -- PREFACE -- Chapter 1  SUMMARIZATION OF SYNCHRONIZATION  IN COMPLEX NETWORK -- Abstract -- 1.1. Introduction -- 1.2. Basic Concept of Network -- 1.2.1. The Graph Description of Network -- 1.2.2. The Average Path Length -- 1.2.3. Clustering Coefficient -- 1.2.4. Betweenness -- 1.2.5. Assortative Coefficient -- 1.3. Complete Synchronization  in Complex Network -- 1.3.1. Master Stability Function -- 1.3.2. Synchronization of Un-weighted Networks -- 1.3.3. Synchronization of Weighted Networks -- 1.3.3.1. Adjust Node Degree -- 1.3.3.2. Adjust Coupling Direction and Edge Information -- 1.3.3.3. Optimal Synchronization of Weighted Networks -- 1.3.3.4. Transition from Non-synchronization to Synchronization -- Chapter 2  ADAPTIVE SYNCHRONIZATION  OF COMPLEX NETWORKS -- Abstract -- 2.1. Introduction -- 2.2. Adaptive Synchronization  with Unknown Network Topologies -- 2.2. Local Synchronization -- 2.2.2. Global Synchronization -- 2.3 Adaptive Synchronization  with Known Network Topologies -- 2.3.1. Global Information -- 2.3.2. Local Information -- 2.3.2. Vertex-based Strategy -- 2.3.2.2. Edge-based Strategy -- Chapter 3  CLUSTER SYNCHRONIZATION  IN COMPLEX NETWORKS -- Abstract -- 3.1. Introduction -- 3.2. Select Appreciate Coupling Matrix -- 3.3. Add Simple Controllers -- 3.3.1. Local Stability Analysis --



3.3.2. Global Stability Analysis -- 3.3.3. Simulation Results -- 3.4. Adaptive Cluster Synchronization of Complex Networks -- 3.4.1. Adaptive Strategy in Cluster Synchronization -- 3.4.2. Global Stability Analysis of Cluster Synchronization -- 3.4.3. Simulation Results -- 3.4.3.1. BA Scale-free Network without Noise -- 3.4.3.2. BA Scale-free Network with Noise -- 3.4.3. Nonidentical Oscillators -- Chapter 4  CONTROL OF COMPLEX  DYNAMICAL NETWORKS.

Abstract -- 4.1. Introduction -- 4.2. Control a General Dynamical Network to  a Homogeneous Equilibrium Point -- 4.3. Control a General Dynamical Network to Synchronization State -- 4.4. Controllability of Pinning Control -- 4.5. Control a Network to  a Heterogeneous Equilibrium Point -- 4.5.1. Open-loop Constant Control -- 4.5.2. Feedback Pinning Control -- 4.5.2.1. Local Stability Analysis -- 4.5.2.2. Global Stability Analysis -- 4.5.2.3. Simulation Results -- Chapter 5  SYNCHRONIZATION OF TIME  VARYING COMPLEX NETWORKS -- Abstract -- 5.1. Introduction -- 5.2. Local Synchronization of  Time Varying Complex Networks -- 5.3. Connection Graph Stability Method -- 5.3.1. Stability Analysis of Global Synchronization -- 5.3.2. Application of Connection Graph Stability Method -- 5.3.2.1. Average Model -- 5.3.2.2. Blinking Small World Network -- 5.4. Fast Switching Synchronization of  Time Varying Complex Networks -- 5.4.1. Local Synchronization of Complex Networks -- 5.4.2. Global Synchronization of Directed Networks -- 5.4.2.1. Fixed Topology -- 5.4.2.2. Switching Topologies -- 5.4.4.3. Simulation Results -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page.

Sommario/riassunto

This book discusses the synchronization in complex networks. At first, the basic concepts of complex networks, including the description of the network, the degree of the node, clustering coefficient, and the average path length are introduced. When the initial states of nodes are near enough to synchronization manifold, the master stability function method is applied to analyze its local stability. However, when the initial states of nodes are randomly distributed, the Lyapunov function method is used to analyze the global stability of synchronization manifold. Furthermore, the connection graph stability method is used to investigate the global stability of synchronization in complex networks with time-varying network topology.