1.

Record Nr.

UNISALENTO991000802109707536

Autore

Mickelsson, Jouko

Titolo

Current algebras and groups / Jouko Mickelsson

Pubbl/distr/stampa

New York : Plenum Press, 1989

ISBN

030643363X

Descrizione fisica

259 p. ; 24 cm.

Collana

Plenum monographs in nonlinear phisics

Classificazione

AMS 22E

AMS 81D15 (1985)

Disciplina

530.12

Soggetti

Algebra of currents

Group theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910966748003321

Autore

Olds C. D (Carl Douglas), <1912->

Titolo

The geometry of numbers / / C.D. Olds, Anneli Lax, Giuliana P. Davidoff

Pubbl/distr/stampa

Washington, DC, : Mathematical Association of America, c2000

ISBN

0-88385-955-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (xvi, 174 pages) : digital, PDF file(s)

Collana

The Anneli Lax new mathematical library ; ; v. 41

Altri autori (Persone)

LaxAnneli

DavidoffGiuliana P

Disciplina

512/.75

Soggetti

Geometry of numbers

Number theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from publisher's bibliographic system (viewed on 02 Oct 2015).

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Lattice Points and Number Theory -- An Introduction to the Geometry of Numbers -- Gaussian Integers, by Peter D. Lax -- The Closest Packing of Convex Bodies -- Brief Biographies -- Solutions and Hints.

Sommario/riassunto

The Geometry of Numbers presents a self-contained introduction to the geometry of numbers, beginning with easily understood questions about lattice-points on lines, circles, and inside simple polygons in the plane. Little mathematical expertise is required beyond an acquaintance with those objects and with some basic results in geometry. The reader moves gradually to theorems of Minkowski and others who succeeded him. On the way, he or she will see how this powerful approach gives improved approximations to irrational numbers by rationals, simplifies arguments on ways of representing integers as sums of squares, and provides a natural tool for attacking problems involving dense packings of spheres. An appendix by Peter Lax gives a lovely geometric proof of the fact that the Gaussian integers form a Euclidean domain, characterizing the Gaussian primes, and proving that unique factorization holds there. In the process, he provides yet another glimpse into the power of a geometric approach to number theoretic problems.