1.

Record Nr.

UNISA990001174870203316

Autore

ECK, Werner

Titolo

L' Italia nell'impero romano : Stato e amministrazione in epoca imperiale / Werner Eck

Pubbl/distr/stampa

Bari : Edipuglia, 1999

ISBN

88-7228-258-6

Descrizione fisica

352 p. ; 24 cm + err. corr.

Collana

Documenti e studi / Collana del Dipartimento di Scienze dell'antichità dell'Università di Bari , Sezione storica ; 25

Disciplina

937.06

Soggetti

Impero romano - Amministrazione - 31 a. C.- 476

Collocazione

IX.4. 419(X A Coll. 61 25)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910965973803321

Autore

Chan Swee Hong

Titolo

Abelian Networks IV. Dynamics of Nonhalting Networks

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2022

ISBN

9781470470241

1470470241

Edizione

[1st ed.]

Descrizione fisica

1 online resource (104 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.276

Classificazione

05C2520K0120M1420M3537B1537E15

Altri autori (Persone)

LevineLionel

Disciplina

512/.25

512.25

Soggetti

Abelian groups

Combinatorics -- Graph theory -- Graphs and abstract algebra (groups, rings, fields, etc.)

Group theory and generalizations -- Abelian groups -- Finite abelian groups

Group theory and generalizations -- Semigroups -- Commutative semigroups

Group theory and generalizations -- Semigroups -- Semigroups in automata theory, linguistics, etc

Dynamical systems and ergodic theory -- Topological dynamics -- Cellular automata

Dynamical systems and ergodic theory -- Low-dimensional dynamical systems -- Combinatorial dynamics (types of periodic orbits)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Chapter 1. Introduction -- 1.1. Flashback -- 1.2. Atemporal dynamics -- 1.3. Relating atemporal dynamics to traditional dynamics -- 1.4. Computational questions -- 1.5. The torsion group of a nonhalting abelian network -- 1.6. Critical networks -- 1.7. Example: Rotor networks and abelian mobile agents -- 1.8. Proof ideas -- 1.9. Summary of notation -- Chapter 2. Commutative Monoid Actions -- 2.1. Injective actions and Grothendieck group -- 2.2. The case of finite commutative monoids -- Chapter 3. Review of Abelian Networks -- 3.1. Definition of abelian networks -- 3.2. Legal and complete executions -- 3.3. Locally recurrent states -- 3.4. The



production matrix -- 3.5. Subcritical, critical, and supercritical abelian networks -- 3.6. Examples: sandpiles, rotor-routing, toppling, etc -- Chapter 4. The Torsion Group of an Abelian Network -- 4.1. The removal lemma -- 4.2. Recurrent components -- 4.3. Construction of the torsion group -- 4.4. Relations to the critical group in the halting case -- Chapter 5. Critical Networks: Recurrence -- 5.1. Recurrent configurations and the burning test -- 5.2. Thief networks of a critical network -- 5.3. The capacity and the level of a configuration -- 5.4. Stoppable levels: When does the torsion group act transitively? -- Chapter 6. Critical Networks: Dynamics -- 6.1. Activity as a component invariant -- 6.2. Near uniqueness of legal executions -- Chapter 7. Rotor and Agent Networks -- 7.1. The cycle test for recurrence -- 7.2. Counting recurrent components -- 7.3. Determinantal generating functions for recurrent configurations -- Chapter 8. Concluding Remarks -- 8.1. A unified notion of recurrence and burning test -- 8.2. Forbidden subconfiguration test for recurrence -- 8.3. Number of recurrent configurations in a recurrent component -- Acknowledgement -- Bibliography -- Back Cover.

Sommario/riassunto

"An abelian network is a collection of communicating automata whose state transitions and message passing each satisfy a local commutativity condition. This paper is a continuation of the abelian networks series of Bond and Levine (2016), for which we extend the theory of abelian networks that halt on all inputs to networks that can run forever. A nonhalting abelian network can be realized as a discrete dynamical system in many different ways, depending on the update order. We show that certain features of the dynamics, such as minimal period length, have intrinsic definitions that do not require specifying an update order. We give an intrinsic definition of the torsion group of a finite irreducible (halting or nonhalting) abelian network, and show that it coincides with the critical group of Bond and Levine (2016) if the network is halting. We show that the torsion group acts freely on the set of invertible recurrent components of the trajectory digraph, and identify when this action is transitive. This perspective leads to new results even in the classical case of sinkless rotor networks (deterministic analogues of random walks). In Holroyd et. al (2008) it was shown that the recurrent configurations of a sinkless rotor network with just one chip are precisely the unicycles (spanning subgraphs with a unique oriented cycle, with the chip on the cycle). We generalize this result to abelian mobile agent networks with any number of chips. We give formulas for generating series such as where n is the number of recurrent chip-and-rotor configurations with n chips; D is the diagonal matrix of outdegrees, and A is the adjacency matrix. A consequence is that the sequence (n)n1 completely determines the spectrum of the simple random walk on the network"--