| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910965481803321 |
|
|
Autore |
Hirano Miki |
|
|
Titolo |
Archimedean Zeta Integrals for CL(3) x GL(2) / / Miki Hirano, Taku Ishii, Tadashi Miyazaki |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (136 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.278 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
IshiiTaku |
MiyazakiTadashi |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Coulomb functions |
Riemann integral |
Functions, Zeta |
Automorphic forms |
Number theory -- Discontinuous groups and automorphic forms -- Representation-theoretic methods; automorphic representations over local and global fields |
Number theory -- Discontinuous groups and automorphic forms -- Fourier coefficients of automorphic forms |
Topological groups, Lie groups -- Lie groups -- Semisimple Lie groups and their representations |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Introduction -- Acknowledgments -- Part 1. Whittaker functions -- Chapter 1. Basic objects -- 1.1. Notation -- 1.2. Groups and algebras -- 1.3. Whittaker functions -- 1.4. Capelli elements -- 1.5. The gamma function and the Bessel functions -- 1.6. Special functions of two variables -- Chapter 2. Preliminaries for ( ,\bR) -- 2.1. Generalized principal series representations -- 2.2. The elements of \g_{\bC} and (\g_{\bC}) -- 2.3. The eigenvalues of generators of (\g_{\bC}) -- Chapter 3. Whittaker functions on (2,\bR) -- 3.1. Representations of (2) -- 3.2. Principal series representations |
|
|
|
|
|
|
|
|
|
|
|
-- 3.3. Principal series Whittaker functions -- 3.4. Essentially discrete series Whittaker functions -- Chapter 4. Whittaker functions on (3,\bR) -- 4.1. Representations of (3) -- 4.2. Principal series representations -- 4.3. Principal series Whittaker functions at scalar -types -- 4.4. Principal series Whittaker functions at 3 dimensional -types -- 4.5. Generalized principal series representations -- 4.6. Generalized principal series Whittaker functions -- Chapter 5. Preliminaries for ( ,\bC) -- 5.1. Principal series representations -- 5.2. The elements of \g_{\bC} and (\g_{\bC}) -- 5.3. The eigenvalues of generators of (\g_{\bC}) -- Chapter 6. Whittaker functions on (2,\bC) -- 6.1. Representations of (2) -- 6.2. Principal series representations -- 6.3. Principal series Whittaker functions -- Chapter 7. Whittaker functions on (3,\bC) -- 7.1. Representations of (3) -- 7.2. Principal series representations -- 7.3. Principal series Whittaker functions -- Part 2. Archimedean zeta integrals for (3)× (2) -- Chapter 8. Preliminaries -- 8.1. The aim of Part 2 -- 8.2. Some formulas for the calculation -- Chapter 9. The local zeta integrals for (3,\bR)× (2,\bR) -- 9.1. The local Langlands correspondence for ( ,\bR). |
9.2. Preparations for (2)-modules -- 9.3. Whittaker functions on (2,\bR) -- 9.4. Whittaker functions on (3,\bR) -- 9.5. The local zeta integrals for (3,\bR)× (2,\bR) -- 9.6. The calculation for '= _{( ₁', ₂')}⊠ _{( ₂', ₂')} -- 9.7. The calculation for '= _{( ₁',1)}⊠ _{( ₂',0)} -- 9.8. The calculation for '= _{( ', ')} -- Chapter 10. The local zeta integrals for (3,\bC)× (2,\bC) -- 10.1. The local Langlands correspondence for ( ,\bC) -- 10.2. Preparations for (2)-modules -- 10.3. Whittaker functions on (2,\bC) -- 10.4. Whittaker functions on (3,\bC) -- 10.5. The local zeta integrals for (3,\bC)× (2,\bC) -- 10.6. The calculation in the case ₂> -- - ₂' -- 10.7. The calculation in the case - ₁'> -- ₂ -- 10.8. The calculation in the case - ₂'≥ ₂≥- ₁' -- Appendix A. Archimedean zeta integrals for (2)× ( ) ( =1,2) -- A.1. The local zeta integrals for (2,\bR)× (1,\bR) -- A.2. The local zeta integrals for (2,\bR)× (2,\bR) -- A.3. The local zeta integrals for (2,\bC)× (1,\bC) -- A.4. The local zeta integrals for (2,\bC)× (2,\bC) -- Bibliography -- Back Cover. |
|
|
|
|
|
|
Sommario/riassunto |
|
"In this article, we give explicit formulas of archimedean Whittaker functions on GL(3) and GL(2). Moreover, we apply those to the calculation of archimedean zeta integrals for GL(3) x GL(2), and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factors"-- |
|
|
|
|
|
|
|
| |