1.

Record Nr.

UNINA9910965481803321

Autore

Hirano Miki

Titolo

Archimedean Zeta Integrals for CL(3) x GL(2) / / Miki Hirano, Taku Ishii, Tadashi Miyazaki

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2022

ISBN

9781470471668

1470471663

Edizione

[1st ed.]

Descrizione fisica

1 online resource (136 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.278

Classificazione

11F7011F3022E46

Altri autori (Persone)

IshiiTaku

MiyazakiTadashi

Disciplina

515/.55

515.55

Soggetti

Coulomb functions

Riemann integral

Functions, Zeta

Automorphic forms

Number theory -- Discontinuous groups and automorphic forms -- Representation-theoretic methods; automorphic representations over local and global fields

Number theory -- Discontinuous groups and automorphic forms -- Fourier coefficients of automorphic forms

Topological groups, Lie groups -- Lie groups -- Semisimple Lie groups and their representations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Introduction -- Acknowledgments -- Part 1. Whittaker functions -- Chapter 1. Basic objects -- 1.1. Notation -- 1.2. Groups and algebras -- 1.3. Whittaker functions -- 1.4. Capelli elements -- 1.5. The gamma function and the Bessel functions -- 1.6. Special functions of two variables -- Chapter 2. Preliminaries for   ( ,\bR) -- 2.1. Generalized principal series representations -- 2.2. The elements of \g_{\bC} and  (\g_{\bC}) -- 2.3. The eigenvalues of generators of  (\g_{\bC}) -- Chapter 3. Whittaker functions on   (2,\bR) -- 3.1. Representations of  (2) -- 3.2. Principal series representations



-- 3.3. Principal series Whittaker functions -- 3.4. Essentially discrete series Whittaker functions -- Chapter 4. Whittaker functions on   (3,\bR) -- 4.1. Representations of  (3) -- 4.2. Principal series representations -- 4.3. Principal series Whittaker functions at scalar  -types -- 4.4. Principal series Whittaker functions at 3 dimensional  -types -- 4.5. Generalized principal series representations -- 4.6. Generalized principal series Whittaker functions -- Chapter 5. Preliminaries for   ( ,\bC) -- 5.1. Principal series representations -- 5.2. The elements of \g_{\bC} and  (\g_{\bC}) -- 5.3. The eigenvalues of generators of  (\g_{\bC}) -- Chapter 6. Whittaker functions on   (2,\bC) -- 6.1. Representations of  (2) -- 6.2. Principal series representations -- 6.3. Principal series Whittaker functions -- Chapter 7. Whittaker functions on   (3,\bC) -- 7.1. Representations of  (3) -- 7.2. Principal series representations -- 7.3. Principal series Whittaker functions -- Part 2. Archimedean zeta integrals for   (3)×  (2) -- Chapter 8. Preliminaries -- 8.1. The aim of Part 2 -- 8.2. Some formulas for the calculation -- Chapter 9. The local zeta integrals for   (3,\bR)×  (2,\bR) -- 9.1. The local Langlands correspondence for   ( ,\bR).

9.2. Preparations for  (2)-modules -- 9.3. Whittaker functions on   (2,\bR) -- 9.4. Whittaker functions on   (3,\bR) -- 9.5. The local zeta integrals for   (3,\bR)×  (2,\bR) -- 9.6. The calculation for  '= _{( ₁', ₂')}⊠ _{( ₂', ₂')} -- 9.7. The calculation for  '= _{( ₁',1)}⊠ _{( ₂',0)} -- 9.8. The calculation for  '= _{( ', ')} -- Chapter 10. The local zeta integrals for   (3,\bC)×  (2,\bC) -- 10.1. The local Langlands correspondence for   ( ,\bC) -- 10.2. Preparations for  (2)-modules -- 10.3. Whittaker functions on   (2,\bC) -- 10.4. Whittaker functions on   (3,\bC) -- 10.5. The local zeta integrals for   (3,\bC)×  (2,\bC) -- 10.6. The calculation in the case  ₂&gt -- - ₂' -- 10.7. The calculation in the case - ₁'&gt -- ₂ -- 10.8. The calculation in the case - ₂'≥ ₂≥- ₁' -- Appendix A. Archimedean zeta integrals for   (2)×  ( ) ( =1,2) -- A.1. The local zeta integrals for   (2,\bR)×  (1,\bR) -- A.2. The local zeta integrals for   (2,\bR)×  (2,\bR) -- A.3. The local zeta integrals for   (2,\bC)×  (1,\bC) -- A.4. The local zeta integrals for   (2,\bC)×  (2,\bC) -- Bibliography -- Back Cover.

Sommario/riassunto

"In this article, we give explicit formulas of archimedean Whittaker functions on GL(3) and GL(2). Moreover, we apply those to the calculation of archimedean zeta integrals for GL(3) x GL(2), and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factors"--