|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910965467003321 |
|
|
Autore |
Golub Gene H (Gene Howard), <1932-2007.> |
|
|
Titolo |
Matrices, moments, and quadrature with applications / / Gene H. Golub and Gerard Meurant |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, N.J., : Princeton University Press, c2010 |
|
|
|
|
|
|
|
ISBN |
|
9786612458019 |
9781282458017 |
1282458019 |
9781282936072 |
1282936077 |
9781400833887 |
1400833884 |
|
|
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (376 p.) |
|
|
|
|
|
|
Collana |
|
Princeton series in applied mathematics |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Matrices |
Numerical analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 335-359) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Preface -- PART 1. Theory -- Chapter 1. Introduction -- Chapter 2. Orthogonal Polynomials -- Chapter 3. Properties of Tridiagonal Matrices -- Chapter 4. The Lanczos and Conjugate Gradient Algorithms -- Chapter 5. Computation of the Jacobi Matrices -- Chapter 6. Gauss Quadrature -- Chapter 7. Bounds for Bilinear Forms uTÆ’(A)v -- Chapter 8. Extensions to Nonsymmetric Matrices -- Chapter 9. Solving Secular Equations -- PART 2. Applications -- Chapter 10. Examples of Gauss Quadrature Rules -- Chapter 11. Bounds and Estimates for Elements of Functions of Matrices -- Chapter 12. Estimates of Norms of Errors in the Conjugate Gradient Algorithm -- Chapter 13. Least Squares Problems -- Chapter 14. Total Least Squares -- Chapter 15. Discrete Ill-Posed Problems -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient |
|
|
|
|