|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910964406903321 |
|
|
Autore |
Hitrik Michael |
|
|
Titolo |
Adiabatic Evolution and Shape Resonances |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (102 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.280 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
MantileAndrea |
SjöstrandJohannes |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Mathematical physics |
Adiabatic invariants |
Partial differential equations -- Qualitative properties of solutions -- Resonances |
Partial differential equations -- Elliptic equations and systems -- Schrödinger operator |
Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions |
Partial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
"Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"-- |
|
|
|
|
|
|
|