1.

Record Nr.

UNINA9910961116303321

Autore

Duttagupta Rupa

Titolo

What is Really Good for Long-Term Growth? Lessons from a Binary Classification Tree (BCT) Approach / / Rupa Duttagupta, Montfort Mlachila

Pubbl/distr/stampa

Washington, D.C. : , : International Monetary Fund, , 2008

ISBN

9786612842146

9781462377985

146237798X

9781452786407

1452786402

9781451871210

145187121X

9781282842144

1282842145

Edizione

[1st ed.]

Descrizione fisica

1 online resource (29 p.)

Collana

IMF Working Papers

IMF working paper ; ; WP/08/263

Altri autori (Persone)

MlachilaMontfort

Disciplina

338.9

Soggetti

Economic development

Economic development - Regional disparities

Demographic Economics: General

Demography

Economic policy

Education

Education: General

Empirical Studies of Trade

Exports and Imports

Health economics

Health

Health: General

Human Capital

Human capital

Income economics

International economics

Labor Productivity

Labor

Labour

Nternational cooperation



Occupational Choice

Population & demography

Population and demographics

Population

Skills

Terms of trade

United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Contents; I. Introduction; II. A Few Notes on the Growth Literature; Tables; 1. Most Significant Variables in Selected Growth Studies; III. The Binary Classification Tree (BCT) Approach; IV. Properties of the Data; 2. Definition of Variables; V. The Results; A. Baseline Model: What is Good for Strong Growth?; Figures; 1. Distribution of Growth; 3. Growth Rate for Top Quartile; 4. What is Really Good for Growth: Ranking of Indicators; 2. Baseline Model; 5. Median Values of Key Indicators in Baseline Model; B. Alternative Specifications and Robustness Checks

3. Out of Sample Forecast (I)-Advanced Economies4. Out of Sample Forecast (II)-Highly Indebted Poor Countries; 6. The Do's and Don'ts of Growth; VI. Concluding Remarks; Appendix; I. Description of the Database; References

Sommario/riassunto

Although the economic growth literature has come a long way since the Solow-Swan model of the fifties, there is still considerable debate on the "real' or "deep" determinants of growth. This paper revisits the question of what is really important for strong long-term growth by using a Binary Classification Tree approach, a nonparametric statistical technique that is not commonly used in the growth literature. A key strength of the method is that it recognizes that a combination of conditions can be instrumental in leading to a particular outcome, in this case strong growth. The paper finds that strong growth is a result of a complex set of interacting factors, rather than a particular set of variables such as institutions or geography, as is often cited in the literature. In particular, geographical luck and a favorable external environment, combined with trade openness and strong human capital are conducive to growth.