1.

Record Nr.

UNINA990000994810403321

Autore

Francon, M.

Titolo

Modern Applications of Physical Optics / M. Francon

Pubbl/distr/stampa

New York : Interscience, 1963

Collana

Interscience Tracts on Physics and Astronomy ; 13

Disciplina

535

537.56

Locazione

FI1

Collocazione

27-026

27-026.001

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910959854403321

Autore

Mühlherr Bernhard

Titolo

Tits Polygons

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2022

ISBN

9781470470180

1470470187

Edizione

[1st ed.]

Descrizione fisica

1 online resource (132 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.275

Classificazione

17C4020E4251E1251E24

Altri autori (Persone)

WeissRichard M

Disciplina

512/.2

Soggetti

Moufang loops

Jordan algebras

Buildings (Group theory)

Graph theory

Polygons

Nonassociative rings and algebras -- Jordan algebras (algebras, triples and pairs) -- Exceptional Jordan structures

Group theory and generalizations -- Structure and classification of infinite or finite groups -- Groups with a $BN$-pair; buildings

Geometry -- Finite geometry and special incidence structures -- Generalized quadrangles, generalized polygons

Geometry -- Finite geometry and special incidence structures -- Buildings and the geometry of diagrams



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"January 2022, volume 275, number 1352 (sixth of 6 numbers)."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Tits polygons -- Tits hexagons -- Groups of relative rank 1 -- Appendix / by Holger P. Petersson.

Sommario/riassunto

"We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a "rank 2" presentation for the group of F-rational points of an arbitrary exceptional simple group of F-rank at least 4 and to determine defining relations for the group of F-rational points of an an arbitrary group of Frank 1 and absolute type D4, E6, E7 or E8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic"--