|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910959854403321 |
|
|
Autore |
Mühlherr Bernhard |
|
|
Titolo |
Tits Polygons |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (132 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.275 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Moufang loops |
Jordan algebras |
Buildings (Group theory) |
Graph theory |
Polygons |
Nonassociative rings and algebras -- Jordan algebras (algebras, triples and pairs) -- Exceptional Jordan structures |
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Groups with a $BN$-pair; buildings |
Geometry -- Finite geometry and special incidence structures -- Generalized quadrangles, generalized polygons |
Geometry -- Finite geometry and special incidence structures -- Buildings and the geometry of diagrams |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"January 2022, volume 275, number 1352 (sixth of 6 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Tits polygons -- Tits hexagons -- Groups of relative rank 1 -- Appendix / by Holger P. Petersson. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a "rank 2" presentation for the group of F-rational points of an arbitrary exceptional simple group of F-rank at |
|
|
|
|