|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910959849703321 |
|
|
Autore |
Martikainen Henri |
|
|
Titolo |
Dyadic-Probabilistic Methods in Bilinear Analysis |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (94 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.274 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Bilinear forms |
Calderón-Zygmund operator |
Dyadic analysis (Social sciences) |
Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Calderón-Zygmund, etc.) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"November 2021. Volume 274." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Adapted Cotlar type inequality and testing condition for _{ ,♯} -- Chapter 3. Suppressed bilinear singular integrals -- Chapter 4. The big piece -- Chapter 5. End point estimates -- Chapter 6. Bilinear good lambda method -- Chapter 7. Proof of the main theorem -- Chapter 8. Weakening the kernel estimates: modified Dini-condition -- Chapter 9. Briefly about square functions -- Bibliography -- Back Cover. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"We demonstrate and develop dyadic-probabilistic methods in connection with non-homogeneous bilinear operators, namely singular integrals and square functions. We develop the full non-homogeneous theory of bilinear singular integrals using a modern point of view. The main result is a new global Tb theorem for Calderon-Zygmund operators in this setting. Our main tools include maximal truncations, adapted Cotlar type inequalities and suppression and big piece methods. While proving our bilinear results we also advance and refine the linear theory of Calderon-Zygmund operators by improving techniques and results. For example, we simplify and make more |
|
|
|
|