1.

Record Nr.

UNINA9910959849703321

Autore

Martikainen Henri

Titolo

Dyadic-Probabilistic Methods in Bilinear Analysis

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2021

ISBN

9781470469139

1470469138

Edizione

[1st ed.]

Descrizione fisica

1 online resource (94 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.274

Classificazione

42B20

Altri autori (Persone)

VuorinenEmil

Disciplina

515/.2433

515.2433

Soggetti

Bilinear forms

Calderón-Zygmund operator

Dyadic analysis (Social sciences)

Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"November 2021. Volume 274."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Adapted Cotlar type inequality and testing condition for  _{ ,♯} -- Chapter 3. Suppressed bilinear singular integrals -- Chapter 4. The big piece -- Chapter 5. End point estimates -- Chapter 6. Bilinear good lambda method -- Chapter 7. Proof of the main theorem -- Chapter 8. Weakening the kernel estimates: modified Dini-condition -- Chapter 9. Briefly about square functions -- Bibliography -- Back Cover.

Sommario/riassunto

"We demonstrate and develop dyadic-probabilistic methods in connection with non-homogeneous bilinear operators, namely singular integrals and square functions. We develop the full non-homogeneous theory of bilinear singular integrals using a modern point of view. The main result is a new global Tb theorem for Calderon-Zygmund operators in this setting. Our main tools include maximal truncations, adapted Cotlar type inequalities and suppression and big piece methods. While proving our bilinear results we also advance and refine the linear theory of Calderon-Zygmund operators by improving techniques and results. For example, we simplify and make more



efficient some non-homogeneous summing arguments appearing in T1 type proofs. As a byproduct, we can manage with ease quite general modulus of continuity in the kernel estimates. Our testing conditions are also quite general by virtue of the big piece method of proof"--