| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910554231703321 |
|
|
Autore |
Tränkle Frank |
|
|
Titolo |
Modellbasierte Entwicklung Mechatronischer Systeme : Mit Software- und Simulationsbeispielen Für Autonomes Fahren |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (292 pages) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Soggetti |
|
Technology & Engineering / Automotive |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Vorwort -- Inhalt -- Abbildungsverzeichnis -- Tabellenverzeichnis -- 1 Einleitung -- 2 Modellbasierte Softwareentwicklung -- 3 Laborprojekt Mini-Auto-Drive -- 4 Grundlagen der Signale und Systeme -- 5 Fahrdynamiksimulation -- 6 Geschwindigkeitsregelung -- 7 Longitudinalpositionsregelung -- 8 Bahnkurvendefinition -- 9 Bahnfolgeregelung -- Literaturverzeichnis -- Register. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Der industrielle Einsatzbereich mechatronischer Systeme umfasst ein weites Spektrum vom Automotive-Bereich über den Maschinen- und Anlagenbau bis hin zur Consumertechnik und stellt somit eine Schlüsseltechnologie der Zukunft dar. Die Entwicklung komplexer softwareintensiver mechatronischer bzw. cyber-physischer Systeme wird aktuell und zukünftig durch die modellbasierte Entwicklung bestimmt und genau hier setzen die beiden Bände als Lehrbücher an. Der Schwerpunkt dieses Bands im Unterschied zum anderen Band liegt auf der modellbasierten Softwareentwicklung im Automotive-Bereich als Teildisziplin der modellbasierten Entwicklung und deren Anwendung in der Entwicklung von Steuerungs- und Regelungsfunktionen für autonomes Fahren. Als Anwendungsbeispiel behandelt dieser Band die modellbasierte Softwareentwicklung der Bewegungsregelung (engl. Motion Control) im buchbegleitenden Laborprojekt Mini-Auto-Drive. Die Leser lernen die Anwendung |
|
|
|
|
|
|
|
|
|
|
|
|
|
entweder der Modellierungs- und Simulationsumgebung MATLAB®/Simulink® oder alternativ der general-purpose Programmiersprache C++ und des Robot-Operating-Systems ROS in der Erstellung und Simulation von Funktions-, Umgebungs- und Softwaremodellen sowie in der Generierung bzw. der Implementierung und dem Test der Embedded-Software. |
This volume focuses on model-based software development in the automotive field as a sub-discipline of model-based development. It also examines how it is being applied in the development of control functions for autonomous driving. The environment used is either MATLAB®/Simulink® or, alternatively, the general-purpose programming language C++ and the Robot Operating System (ROS). |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910958733203321 |
|
|
Autore |
Rettig Pascal |
|
|
Titolo |
Professional HTML5 mobile game development / / Pascal Rettig, David Karlins, Brad Wilson |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Indianapolis, IN, : WIley Pub. Inc., 2012 |
|
|
|
|
|
|
|
ISBN |
|
9786613904911 |
9781118421444 |
1118421442 |
9781283592468 |
1283592460 |
9781118301333 |
1118301331 |
|
|
|
|
|
|
|
|
Edizione |
[1st edition] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (554 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
KarlinsDavid |
WilsonBrad (Computer software developer) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
HTML (Document markup language) |
Video games - Programming |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Professional HTML5 Mobile Game Development; About the Author; Acknowledgments; Contents; Introduction; Part I: Diving In; Chapter 1: Flying Before You Walk; Introduction; Building a Complete Game in 500 Lines; Adding the Boilerplate HTML and CSS; Getting Started with Canvas; Creating Your Game's Structure; Loading the SpriteSheet; Creating the Game Object; Adding a Scrolling Background; Putting in a Title Screen; Adding a Protagonist; Summary; Chapter 2: Making It a Game; Introduction; Creating the GameBoard Object; Firing Missiles; Adding Enemies; Refactoring the Sprite Classes |
Handling CollisionsRepresenting Levels; Summary; Chapter 3: Finishing Up and Going Mobile; Introduction; Adding Touch Controls; Maximizing the Game; Adding a Score; Making It a Fair Fight; Summary; Part II: Mobile HTML5; Chapter 4: HTML5 for Mobile; Introduction; Capturing a Brief History of HTML5; Using HTML5 The Right Way; Considering HTML5 from a Game Perspective; Considering HTML5 from a Mobile Perspective; Surveying the Mobile Browser Landscape; Summary; Chapter 5: Learning Some Helpful Libraries; Introduction; Learning JavaScript Libraries; Starting with jQuery; Using Underscore.js |
SummaryChapter 6: Being a Good Mobile Citizen; Introduction; Responding to Device Capabilities; Dealing with Browser Resizing, Scrolling, and Zooming; Configuring Your App for the iOS Home Screen; Taking Mobile Performance into Consideration; Adapting to Limited Bandwidth and Storage; Going Offline Completely with Application Cache; Summary; Part III: JavaScript Game Dev Basics; Chapter 7: Learning about Your HTML5 Game Development Environment; Introduction; Picking an Editor; Exploring the Chrome Developer Tools; Debugging JavaScript; Profiling and Optimizing Your Code; Mobile Debugging |
SummaryChapter 8: Running JavaScript on the Command Line; Introduction; Learning About Node.js; Installing Node; Installing and Using Node Modules; Creating Your Own Script; Writing a Sprite-Map Generator; Summary; Chapter 9: Bootstrapping the Quintus Engine: Part I; Introduction; Creating a Framework for a Reusable HTML5 Engine; Adding the Game Loop; Adding Inheritance; Supporting Events; Supporting Components; Summary; Chapter 10: Bootstrapping the Quintus Engine: Part II; Introduction; Accessing a Game Container Element; Capturing User Input; Loading Assets; Summary |
Chapter 11: Bootstrapping the Quintus Engine: Part IIIIntroduction; Defining SpriteSheets; Adding Sprites; Setting the Stage with Scenes; Finishing Blockbreak; Summary; Part IV: Building Games with CSS3 and SVG; Chapter 12: Building Games with CSS3; Introduction; Deciding on a Scene Graph; Implementing DOM Support; Summary; Chapter 13: Crafting a CSS3 RPG; Introduction; Creating a Scrolling Tile Map; Building the RPG; Summary; Chapter 14: Building Games with SVG and Physics; Introduction; Understanding SVG Basics; Working with SVG from JavaScript; Adding SVG Support to Quintus |
Adding Physics with Box2D |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Create mobile game apps for the lucrative gaming market If you're an experienced developer seeking to break into the sizzling mobile game market, this is the book for you. Covering all mobile and touchscreen devices, including iPhones, iPads, Android, and WP7.5, this book takes you through the steps of building both single- and multi-player mobile games. Topics include standard patterns for building games in HTML5, what methods to choose for building (CSS3, SVG, or Canvas), popular game engines and frameworks, and much more. Best of all, code for six basic games is provided, so yo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9911019811803321 |
|
|
Autore |
Corbella Ignasi |
|
|
Titolo |
Principles of interferometric and polarimetric radiometry / / Ignasi Corbella |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2025] |
|
©2025 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781394255115 |
139425511X |
9781394255122 |
1394255128 |
9781394255139 |
1394255136 |
9781394255108 |
1394255101 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xxv, 288 pages) : illustrations |
|
|
|
|
|
|
Soggetti |
|
Radiation - Measurement |
Radiació - Mesurament |
Interferometria |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Foreword -- About the Author -- Preface -- Acknowledgments -- 1 Signals, Receivers, and Antennas -- 1.1 Random Variables, Real and Complex -- 1.1.1 Definitions -- 1.1.2 Operations -- 1.1.3 Normal Random Variables -- 1.1.4 The Arc Sine Law -- 1.2 Stochastic Processes -- 1.2.1 Stationarity -- 1.2.2 Correlation and Power -- 1.2.3 Jointly Normal Processes -- 1.2.4 Spectral Densities -- 1.2.5 Linear Systems -- 1.2.6 Time Averaging or Integration -- 1.3 Analytic Signals -- 1.3.1 Hilbert Transform and Quadrature Filter -- 1.3.2 Complex Envelope -- 1.3.3 Correlation and Spectra -- 1.4 Phasors of Random Signals -- 1.4.1 Concept -- 1.4.2 Power and Cross-correlation -- 1.4.3 Linear Systems -- 1.5 Microwave Networks -- 1.5.1 Voltage and Current -- 1.5.2 Normalized Voltage Waves -- 1.5.3 Available Power -- |
|
|
|
|
|
|
|
|
|
1.5.4 S-parameters and Power Gains -- 1.5.5 Noise Waves and Temperature -- 1.5.6 Interconnection -- 1.5.7 Two-port Networks -- 1.5.8 Cascade -- 1.5.9 High Gain Receiver -- 1.5.10 The Bosma Theorem -- 1.6 Antennas -- 1.6.1 Radiated Electric Field and Power Density -- 1.6.2 Antenna Pattern and Directivity -- 1.6.3 Antenna Polarization -- 1.6.4 Thermal Noise Radiation -- 1.6.5 Received Signal -- 1.6.6 Phase Center -- 1.6.7 Polarization Misalignment -- 1.6.8 Transmission Link -- 1.6.9 Reciprocity -- 1.6.10 Other Definitions -- 1.6.11 Antenna Loss -- References -- 2 Microwave Radiometry -- 2.1 Thermal Emission -- 2.1.1 Emissivity and Brightness Temperature -- 2.1.2 Planck and Rayleigh-Jeans Laws -- 2.2 Polarization -- 2.2.1 Stokes Parameters and Polarimetric Brightness Temperature -- 2.2.2 Change of Polarization Frame -- 2.2.3 Linear Axis Rotation -- 2.2.4 Horizontal and Vertical Polarization -- 2.2.5 Circular Polarization -- 2.3 Antenna Temperature -- 2.3.1 Concept -- 2.3.2 Flat Target -- 2.3.3 Point Source -- 2.3.4 Extended Source -- 2.3.5 Angular Resolution -- 2.4 Total Power Radiometers -- 2.4.1 Received Signal -- 2.4.2 Power Measurement and Sensitivity -- 2.4.3 Square Law Device -- 2.4.4 Quadratic Detector -- References -- 3 Interferometry and Polarimetry -- 3.1 Historical Perspective -- 3.1.1 The Proposed Formulation -- 3.2 A Single Baseline -- 3.2.1 Visibility -- 3.2.2 Single Polarization -- 3.2.3 Polarimetric Radiometry: Ideal Case -- 3.2.4 Full Polarimetric Case -- 3.2.5 Receivers Interaction -- 3.2.6 The "−T r " Term -- 3.3 The Visibility Equation -- 3.3.1 Complex Correlation -- 3.3.2 The Fringe Washing Function -- 3.3.3 Director Cosines -- 3.3.4 Fourier Relation -- 3.4 Correlation Measurement -- 3.4.1 Sensitivity -- 3.4.2 Four Signal Multipliers -- 3.4.3 Two Signal Multipliers -- 3.4.4 Analog Multipliers -- 3.4.5 Signal Clipping and Normalized Correlation -- References -- 4 Aperture Synthesis -- 4.1 Synthetic Beam -- 4.1.1 Hexagonal Sampling -- 4.2 Radiometric Sensitivity -- 4.2.1 Variance of the Modified Brightness Temperature -- 4.2.2 Uncorrelated Visibility Samples -- 4.2.3 Correlation of Visibility Samples -- 4.3 Spatial Sampling -- 4.3.1 Visibility Coverage -- 4.3.2 Reciprocal Grids -- 4.3.3 Aliasing -- 4.3.4 Field of View -- 4.3.5 Hexagonal Grids: Y-shape Instrument -- 4.3.6 Hexagonal Instrument -- 4.4 Imaging -- 4.4.1 System of Equations -- 4.4.2 Conjugate Extension and Redundant Baselines Averaging -- 4.4.3 Fourier Image Reconstruction -- 4.4.4 G-matrix Image Reconstruction -- 4.4.5 Polarimetric Retrieval: Ideal Case -- 4.4.6 Full Polarimetric Case -- 4.4.7 Spatial Frequency Components -- 4.4.8 Reconstruction Error and Alias Mitigation -- References -- 5 Instrument Techniques -- 5.1 Frequency Conversion -- 5.1.1 Frequency Bands -- 5.1.2 Mixer Operation -- 5.1.3 Image Rejection Mixer -- 5.2 In-phase and Quadrature (IQ) Mixer -- 5.2.1 Concept -- 5.2.2 General Analysis -- 5.2.3 Quadrature Error -- 5.2.4 Correction of Phase Errors -- 5.2.5 Normalized Correlations -- 5.3 Quarter Period Delay -- 5.3.1 Concept -- 5.3.2 Center Frequency Error -- 5.3.3 Normalized Correlations -- 5.4 Digital Techniques -- 5.4.1 Sampling -- 5.4.2 Impact on Measurement Uncertainty -- 5.4.3 Low-frequency Spectrum -- 5.4.4 Spectrum with High-frequency Content -- 5.4.5 I/Q Alternate Sampling -- 5.4.6 Nyquist Zones -- 5.4.7 Correlation in the Frequency Domain -- References -- 6 Calibration and Characterization -- 6.1 Calibration Standards -- 6.1.1 Antenna and Calibration Planes -- 6.1.2 Plane Change in Total Power Radiometers -- 6.1.3 External Passive Targets -- 6.1.4 Probe Antenna -- 6.1.5 Internal Load -- 6.1.6 Noise Distribution -- 6.2 Parameter Retrieval -- 6.2.1 Correlator Gain -- 6.2.2 Inter-element Phase and Amplitude -- 6.2.3 Correlator Offset -- 6.2.4 Flat Target Response -- 6.2.5 Fringe Washing Function Shape -- 6.2.6 Receiver Gain and Offset -- 6.2.7 Instrumental Offset -- 6.3 |
|
|
|
|
|
|
|
|
|
Nonlinearity -- 6.3.1 Deflection Ratio -- 6.3.2 Impact on Instrumental Offset -- 6.4 Calibration Rate -- 6.4.1 Averaging and Interpolation -- 6.4.2 Temperature Correction -- References -- A Definitions and Concepts -- A. 1 Complex Vectors -- A. 2 Useful Complex Number Identities -- A. 3 Energy Conservation and Unitary Matrix -- A. 4 Spherical Coordinates and Solid Angle -- A.4. 1 Differential Surface -- A.4. 2 Solid Angle -- A. 5 Quadrature Equation Inversion -- A. 6 Special Functions -- A. 7 Fourier Transform -- A.7. 1 Convolution -- A.7. 2 Properties -- A.7. 3 Transform Pairs -- A.7. 4 Real Signals -- A.7. 5 Two-dimensional Fourier Transform -- A. 8 Discrete Fourier Transform -- A.8. 1 Correlation in Time and in Frequency -- A.8. 2 Random Signals -- A.8. 3 Two-dimensional Case. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides an in-depth exploration of microwave and polarimetric radiometry, focusing on principles, theories, and applications. It covers topics such as signals, receivers, antennas, calibration, and imaging techniques, with a particular emphasis on their use in remote sensing. The book is a comprehensive guide for engineers and researchers, detailing the contributions of Prof. Ignasi Corbella to the field, including his work on the SMOS mission for measuring soil moisture and ocean salinity. It aims to serve as a valuable reference for those working with radiometric instruments and advanced radiometry techniques. |
|
|
|
|
|
|
|
| |