|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910958242803321 |
|
|
Autore |
Maddy Penelope |
|
|
Titolo |
Naturalism in mathematics / / Penelope Maddy |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford, : Clarendon Press |
|
New York, : Oxford University Press, 1997 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematics - Philosophy |
Naturalism |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [235]-247) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- PART I: THE PROBLEM -- 1. The Origins of Set Theory -- 2. Set Theory as a Foundation -- 3. The Standard Axioms -- 4. Independent Questions -- 5. New Axiom Candidates -- 6. V = L -- PART II: REALISM -- 1. Gödelian Realism -- 2. Quinean Realism -- 3. Set Theoretic Realism -- 4. A Realist's Case against V = L -- 5. Hints of Trouble -- 6. Indispensability and Scientific Practice -- 7. Indispensability and Mathematical Practice -- PART III: NATURALISM -- 1. Wittgensteinian Anti-Philosophy -- 2. A Second Gödelian Theme -- 3. Quinean Naturalism -- 4. Mathematical Naturalism -- 5. The Problem Revisited -- 6. A Naturalist's Case against V = L -- Conclusion -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favour of another approach--naturalism. Penelope Maddy defines naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. |
|
|
|
|
|
|
|