1.

Record Nr.

UNINA990001699600403321

Autore

Pantanelli, Enrico

Titolo

Esperienze di lavorazione delle olive col metodo Acapulco / Enrico Pantanelli, Vito Brandonisio

Pubbl/distr/stampa

Bari : Trizio, 1934

Descrizione fisica

58 p., tav. ; 24 cm

Altri autori (Persone)

Brandonisio, Vito <1904-1974>

Disciplina

664.8

Locazione

FAGBC

Collocazione

60 OP. 27/9

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910957877103321

Autore

Foias Ciprian

Titolo

Navier-Stokes equations and turbulence / / C. Foias, O. Manley, R. Rosa, R. Temam

Pubbl/distr/stampa

Cambridge ; ; New York : , : Cambridge University Press, , 2001

ISBN

9780511546754

1-107-11154-4

1-280-41654-8

9786610416547

0-511-17438-1

0-511-03936-0

0-511-15422-4

0-511-32829-X

0-511-54675-0

0-511-05242-1

Edizione

[First edition.]

Descrizione fisica

1 online resource (xiv, 347 pages) : digital, PDF file(s)

Collana

Encyclopedia of mathematics and its applications ; ; v. 83

Disciplina

532/.0527

Soggetti

Turbulence

Navier-Stokes equations

Equacions de Navier-Stokes

Turbulència - Mètodes estadístics



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Nota di bibliografia

Includes bibliographical references (p. 331-342) and index.

Nota di contenuto

Introduction and Overview of Turbulence -- Viscous Fluids. The Navier-Stokes Equations -- Turbulence: Where the Interests of Engineers and Mathematicians Overlap -- Elements of the Theories of Turbulence of Kolmogorov and Kraichnan -- Function Spaces, Functional Inequalities, and Dimensional Analysis -- Elements of the Mathematical Theory of the Navier-Stokes Equations -- Energy and Enstrophy -- Boundary Value Problems -- Helmholtz-Leray Decomposition of Vector Fields -- Weak Formulation of the Navier-Stokes Equations -- Function Spaces -- The Stokes Operator -- Existence and Uniqueness of Solutions: The Main Results -- Analyticity in Time -- Gevrey Class Regularity and the Decay of the Fourier Coefficients -- Function Spaces for the Whole-Space Case -- The No-Slip Case with Moving Boundaries -- Dissipation Rate of Flows -- Nondimensional Estimates and the Grashof Number -- Mathematical Complements -- Proofs of Technical Results in Chapter II -- Finite Dimensionality of Flows -- Determining Modes -- Determining Nodes -- Attractors and Their Fractal Dimension -- Approximate Inertial Manifolds -- Proofs of Technical Results in Chapter III -- Stationary Statistical Solutions of the Navier-Stokes Equations, Time Averages, and Attractors -- Mathematical Framework, Definition of Stationary Statistical Solutions, and Banach Generalized Limits -- Invariant Measures and Stationary Statistical Solutions in Dimension 2 -- Stationary Statistical Solutions in Dimension 3 -- Attractors and Stationary Statistical Solutions.

Sommario/riassunto

This book aims to bridge the gap between practising mathematicians and the practitioners of turbulence theory. It presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The book is the result of many years of research by the authors to analyse turbulence using Sobolev spaces and functional analysis. In this way the authors have recovered parts of the conventional theory of turbulence, deriving rigorously from the Navier-Stokes equations what had been arrived at earlier by phenomenological arguments. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience. Each chapter is accompanied by appendices giving full details of the mathematical proofs and subtleties. This unique presentation should ensure a volume of interest to mathematicians, engineers and physicists.