1.

Record Nr.

UNINA9910957044903321

Autore

Heidersdorf Thorsten

Titolo

Cohomological Tensor Functors on Representations of the General Linear Supergroup

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2021

©2021

ISBN

9781470465285

1470465280

Edizione

[1st ed.]

Descrizione fisica

1 online resource (118 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.270

Classificazione

17B1017B2017B5518D1020G05

Altri autori (Persone)

WeissauerRainer

Disciplina

512/.57

Soggetti

Tensor algebra

Tensor products

Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)

Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras

Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras

Category theory; homological algebra -- Categories with structure -- Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories

Group theory and generalizations -- Linear algebraic groups and related topics -- Representation theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Cohomological Tensor Functors -- 2.1. The superlinear groups -- 2.2. The Duflo-Serganova functor -- 2.3. Cohomology functors -- 2.4. Support varieties and the kernel of -- 2.5. The tensor functor -- 2.6. The relation between     (  ) and   (  ) -- 2.7. Hodge decomposition -- 2.8. The case   &gt -- 1 -- 2.9. Boundary maps -- 2.10. Highest weight modules -- 2.11. The Casimir -- Chapter 3. The Main Theorem and its Proof -- 3.1. The language of Brundan and Stroppel -- 3.2. On segments, sectors and plots -- 3.3. Mixed tensors and ground states -- 3.4. Sign normalizations -- 3.5. The main theorem -- 3.6. Strategy



of the proof -- 3.7. Modules of Loewy length 3 -- 3.8. Inductive Control over -- 3.9. Moves -- Chapter 4. Consequences of the Main Theorem -- 4.1. Tannaka Duals -- 4.2. Cohomology I -- 4.3. Cohomology II -- 4.4. Cohomology III -- 4.5. The forest formula -- 4.6.   -module structure on the cohomology   ^{∙}_{    _{  }} -- 4.7. Primitive elements of   ^{∙}_{    _{  }}(  (1)) -- 4.8. Kac module of 1 -- 4.9. Strict morphisms -- 4.10. The module   ((  )ⁿ) -- 4.11. The basic hook representations -- Bibliography -- Back Cover.

Sommario/riassunto

"We define and study cohomological tensor functors from the category Tn of finite-dimensional representations of the supergroup for the image of an arbitrary irreducible representation. In particular DS(L) is semisimple and multiplicity free. We derive a few applications of this theorem such as the degeneration of certain spectral sequences and a formula for the modified superdimension of an irreducible representation"--