1.

Record Nr.

UNINA9910674059703321

Autore

Aguzzi Cédric

Titolo

Constitution et passé : Entre mémoire et histoire / / Ariane Vidal-Naquet

Pubbl/distr/stampa

Aix-en-Provence, : DICE Éditions, 2023

ISBN

979-1-0975-7818-3

Descrizione fisica

1 online resource (174 p.)

Altri autori (Persone)

BonnetManon

Collet-RetkesDorottya

GudzenkoMaria

MalléjacPauline

MorabitoMarcel

MorandoArnaud

PadovaniJulien

ParjouetClaire

ValmaletteClarisse

Vidal-NaquetAriane

Soggetti

Law (General)

devoir de mémoire

histoire

justice transitionnelle

lieux de mémoire

lois mémorielles

mémoire

mémoire constitutionnelle

normativisation du passé

passé

révisionnisme constitutionnel

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Sommario/riassunto

Issu d’une journée d’études qui s’est tenue à Aix-Marseille Université en 2020, le présent ouvrage propose des réflexions sur les rapports que la Constitution entretient avec le passé, sur la façon dont elle le représente, l’appréhende, le traite voire l’utilise. Ce thème, abordé par les jeunes chercheurs de l’Institut Louis Favoreu sous le parrainage de chercheurs expérimentés, trouve, dans l’actualité, des résonances importantes avec, par exemple, la multiplication des lois mémorielles et des devoirs de mémoire, les débats soulevés par une «  cancel culture  » constitutionnelle ou encore la constitutionnalisation de «  vérités  » historiques. Les différentes contributions analysent, dans une perspective historique et comparée, la façon dont la Constitution/les Constitutions se saisissent du passé : à cet égard, elles soulignent la diversité des manières de représenter le passé voire de se l’approprier et interrogent la spécificité du discours constitutionnel sur le passé. Elles analysent également la façon dont la/les Constitutions utilisent le passé, comment ce dernier intervient au soutien de la construction du récit constitutionnel et comment il peut être mobilisé par les différents acteurs constitutionnels, notamment le juge.

2.

Record Nr.

UNINA9910956567103321

Autore

Cheng Ta-Pei

Titolo

A College Course on Relativity and Cosmology

Pubbl/distr/stampa

Oxford, : OUP Oxford, 2015

ISBN

0-19-106084-4

Descrizione fisica

1 online resource (724 p.)

Disciplina

530.11

Soggetti

Relativity (Physics)

Space and time

Gravity

Black holes (Astronomy)

Cosmology

Physics

Physical Sciences & Mathematics

Physics - General

Atomic Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Cover; Preface; Contents; 1 Introduction; 1.1 Relativity as a coordinate symmetry; 1.1.1 Coordinate transformations; 1.1.2 The principle of relativity; 1.2 Einstein and relativity; 1.2.1 The new kinematics; 1.2.2 GR as a field theory of gravitation; Review questions; 2 Special Relativity: The New Kinematics; 2.1 Einstein's two postulates and Lorentz transformation; 2.1.1 Relativity of simultaneity and the new conception of time; 2.1.2 Coordinate-dependent time leads to Lorentz transformation; 2.2 Physics implications of Lorentz transformation; 2.2.1 Time dilation and length contraction

2.2.2 The invariant interval and proper time2.3 Two counterintuitive scenarios as paradoxes; Review questions; 3 Special Relativity: Flat Spacetime; 3.1 Geometric formulation of relativity; 3.2 Tensors in special relativity; 3.2.1 Generalized coordinates: bases and the metric; 3.2.2 Velocity and momentum 4-vectors; 3.2.3 Electromagnetic field 4-tensor; 3.2.4 The energy-momentum-stress 4-tensor for a field system; 3.3 The spacetime diagram; 3.3.1 Invariant regions and causal structure; 3.3.2 Lorentz transformation in the spacetime diagram; Review questions

4 Equivalence of Gravitation and Inertia4.1 Seeking a relativistic theory of gravitation; 4.1.1 Newtonian potential: a summary; 4.1.2 Einstein's motivation for general relativity; 4.2 The equivalence principle: from Galileo to Einstein; 4.2.1 Inertial mass vs. gravitational mass; 4.2.2 Einstein: ''my happiest thought''; 4.3 EP leads to gravitational time dilation and light deflection; 4.3.1 Gravitational redshift and time dilation; 4.3.2 Relativity and the operation of GPS; 4.3.3 The EP calculation of light deflection; 4.3.4 Energetics of light transmission in a gravitational field

Review questions5 General Relativity as a Geometric Theory of Gravity; 5.1 Metric description of a curved manifold; 5.1.1 Gaussian coordinates and the metric tensor; 5.1.2 The geodesic equation; 5.1.3 Local Euclidean frames and the flatness theorem; 5.2 From the equivalence principle to a metric theory of gravity; 5.2.1 Curved spacetime as gravitational field; 5.2.2 GR as a field theory of gravitation; 5.3 Geodesic equation as the GR equation of motion; 5.3.1 The Newtonian limit; Review questions; 6 Einstein Equation and its Spherical Solution; 6.1 Curvature: a short introduction

6.2 Tidal gravity and spacetime curvature6.2.1 Tidal forces-a qualitative discussion; 6.2.2 Deviation equations and tidal gravity; 6.3 The GR field equation; 6.3.1 Einstein curvature tensor; 6.3.2 Einstein field equation; 6.3.3 Gravitational waves; 6.4 Geodesics in Schwarzschild spacetime; 6.4.1 The geometry of a spherically symmetric spacetime; 6.4.2 Curved spacetime and deflection of light; 6.4.3 Precession of Mercury's orbit; Review questions; 7 Black Holes; 7.1 Schwarzschild black holes; 7.1.1 Time measurements around a black hole; 7.1.2 Causal structure of the Schwarzschild surface

7.1.3 Binding energy to a black hole can be extremely large

Sommario/riassunto

This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspiredEinstein's idea of curved spacetime as the gravitational field. At a more mathematically



accessible level, it provides a metric descr