| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910956398103321 |
|
|
Titolo |
Liquid fuels : types, properties and production / / Domenic A. Carasillo, editor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Nova Science Publishers, c2012 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (310 p.) |
|
|
|
|
|
|
Collana |
|
Energy science, engineering and technology |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- LIQUID FUELS: TYPES, PROPERTIES AND PRODUCTION -- LIQUID FUELS: TYPES, PROPERTIES AND PRODUCTION -- CONTENTS -- PREFACE -- ULTRADEEP DESULFURIZATION OF LIQUID FUELS BY ADSORPTION UNDER THE AMBIENT CONDITIONS: ACTIVE SITES AND MOLECULAR MECHANISMS -- ABSTRACT -- 1. INTRODUCTION -- 2. SULFUR ORGANIC COMPOUNDS IN LIQUID FUELS -- 2.1. Concentration of Sulfur Organic Compounds in Liquid Fuels -- 2.2. Methods of Ultradeep Desulfurization of Liquid Fuels -- 2.3. Desulfurization of Liquid Fuels by Adsorption -- 2.4. Sulfur Organic Compounds in Liquid Fossil Fuels -- 2.5. Ultralow Sulfur Liquid Fuels for "Hydrogen Economy" -- 3. MECHANISMS OF FUEL DESULFURIZATION BY NON-REACTIVE ADSORPTION -- 3.1. Structure of Active Sites and Mechanisms of Desulfurization -- 3.2. Supported Silver as Desulfurization Sorbent -- 3.3. Activated Carbons as Desulfurization Sorbents -- 3.4. Supported Charge-Transfer Complexes -- 3.5. MOFs as Desulfurization Sorbents -- 3.6. Pervaporation Membranes as Desulfurization Sorbents -- 3.7. Studies of Adsorption Complexes by Quantum Chemistry -- 3.8. Supported Metal Cations as Desulfurization Sorbents: Multiple Active Sites -- 3.9. Synergetic Effects in Adsorptive Desulfurization of Liquid Fuels -- 3.10. Competitive Non-Reactive Adsorption on Desulfurization Sorbents -- 4. MECHANISMS OF FUEL DESULFURIZATION BY REACTIVE ADSORPTION -- 4.1. Desulfurization of Liquid Fuels via Metal-Sulfur Reaction -- 4.2. Reactive Adsorption on Acidic Surface Sites -- 4.3. Co-Adsorption of Fuel Additives with Sulfur |
|
|
|
|
|
|
|
|
|
Aromatic Compounds -- 5. MECHANISMS OF DESORPTION AND REGENERATION OF DESULFURIZATION SORBENTS -- 5.1. Non-Destructive Regeneration of Desulfurization Sorbents -- 5.2. Non-Oxidative Destructive Regeneration -- 5.3. Oxidative Destructive Regeneration -- CONCLUSION -- REFERENCES. |
AN ANALYSIS OF COAL MINE METHANE EMISSIONS: AVAILABLE AND EMERGING UTILIZATION OR MITIGATION TECHNOLOGIES -- ABSTRACT -- 1. GENERAL PROPERTIES AND FORMATION OF METHANE -- 1.1. Environmental Effects of Methane -- 1.2. Sources of Methane -- 1.2.1. Agriculture -- 1.2.2. Energy -- 1.2.3. Wastes -- 1.3. General Properties of Methane -- 1.4. Chemical Properties of Methane -- I. Combustion -- II. Hydrogen Activation -- III. Reactions with Halogens -- 1.5. Coalification -- 2. METHANE EMISSIONS FROM COAL MINING -- 3. UTILIZATION OF COAL MINE METHANE (CMM) -- 3.1. Utilization Options of Drained Methane -- 3.1.1. Natural Gas Substitution -- 3.1.1.1. Rejecting the Undesirable Constituents -- 3.1.1.2. Blending the Gas with Higher Heating Value Gas -- 3.1.2. Brine Water Treatment -- 3.1.3. Coal Dryers -- 3.1.4. Heating Mine Ventilation Air and Mine Buildings -- 3.1.5. Local Industries -- 3.1.6. Power Generation -- 3.1.6.1. Gas Turbine -- 3.1.6.2. Micro Turbines -- 3.1.6.3. IC Engines -- 3.1.6.4. Fuel Cell -- 3.2. Utilization Options of Methane in Ventilation Air -- 3.2.1. Ancillary Use -- 3.2.1.1. Pulverized Coal-Fired Power Stations -- 3.2.1.2. IC Engines -- 3.2.1.3. Hybrid Waste/Coal Methane Combustion Units -- 3.2.2. Principal Use -- 3.2.2.1. Thermal Flow-Reversal Reactor (TFRR) -- 3.2.2.2. Catalytic Flow-Reversal Reactor (CFRR) -- 3.2.2.3. Catalytic- Monolith Reactors (CMR) -- 3.2.2.4. Lean-Burn Gas Turbines -- 3.2.2.5. Concentrators -- 4. WORLDWIDE USE OF COAL MINE METHANE -- I. China/CPA -- II. OECD Countries -- III. Non-EU FSU Countries -- CONCLUSIONS -- REFERENCES -- HIGH YIELD BIOFUEL PRODUCTION FROM VEGETABLE OILS WITH SUPERCRITICAL ALCOHOLS -- ABSTRACT -- 1. INTRODUCTION -- 2. SUPERCRITICAL FLUID TRANSESTERIFICATION -- 3. EXPERIMENTAL -- 3.1. Reagents and Material Description -- 3.2. Analysis. |
3.3. Supercritical Methanol and Ethanol Transesterification Method -- 4. RESULTS AND DISCUSSIONS -- 4.1. Effect of Reaction Temperature, Pressure, and Concentration on Biodiesel Production in Supercritical Alcohols -- 4.2. Effect of Ultrasonic Treatment of the Mixture on Biodiesel Production in Supercritical Alcohols -- 5. THERMOPHYSICAL PROPERTIES OF PURE ALCOHOLS AND THEIR MIXTURES WITH VEGETABLE OILS AT SUPERCRITICAL CONDITIONS -- 5.1. Supercritical Methanol and Ethanol and Their Properties -- 5.2. Enthalpy of Transesterification Reaction of Vegetable Oils in the Supercritical Alcohols and Isobaric Heat Capacity Measurements: Experimental -- 5.3. Result and Discussion -- 6. ECONOMIC ANALYSIS OF THE PROCESS OF BIODIESEL FUEL PRODUCTION WITH SUPERCRITICAL ALCOHOLS -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- POLYMER WASTES PYROLYSIS FOR LIQUID FUEL PRODUCTION -- ABSTRACT -- 1. INTRODUCTION -- 2. LIQUID FUELS -- 2.1. Petroleum Hydrocarbon Structures -- 2.2. Main Refining Process -- 2.2.1. Distillation -- 2.2.2. Thermal Decomposition -- 2.2.3. Hydrocracking -- 2.2.4. Fluid Catalytic Cracking -- 2.2.5. Steam Cracking -- 2.2.6. Hydrogenation -- 2.2.7. Reforming -- 2.2.8. Filtration -- 2.3. Main Products -- 2.3.1. Light Products -- 2.3.2. Gasoline -- 2.3.3. Petroleum Naphtha -- 2.3.4. Kerosene -- 2.3.5. Diesel Fuel -- 2.3.6. Lubricants -- 2.3.7. Asphalt -- 2.3.7. Petroleum Coke -- 2.4. Rubber Tyre and Plastic Wastes Pyrolysis -- 2.4.1. Rubber Tyre Liquid Production -- 2.4.2. Plastics Liquid Production -- 2.4.3. Mixtures of Rubber Tyre and Plastics Liquid |
|
|
|
|
|
|
|
Production -- BIBLIOGRAPHY -- BIOFUEL PRODUCTION FROM CASTOR SEED OIL -- ABSTRACT -- 1. INTRODUCTION -- 2. GLOBAL BIOFUEL SCENARIOS -- 2.1. Indian Biofuel Scenario -- 3. BIODIESEL/BIO-FUEL -- 3.1. Castor (Ricinus Communis) -- 3.2. World Castor Scenario -- 3.3. India Castor Scenario. |
3.4. Castor Oil in Food -- 3.5. Medicinal Use of Castor Oil -- 3.6. Traditional or Folk Medicines -- 3.7. Industrial Castor Oil -- 4. THE BIODIESEL REACTION -- 4.1. High Free Fatty Acid -- 4.3. Observations on Obtaining Castor Oil -- 5. BIODIESEL PROCESSES -- 5.1. Biodiesel Production Material -- 5.2. Production Process Details of Castor Methyl Ester from Castor (Ricinus Communis) Oil -- 5.2.1. Heating of Oil -- 5.2.2. Mixing of Methanol and Catalyst -- 5.2.3. Draining of Glycerin -- 5.2.4. Washing of Fuel -- 5.2.5. Air/Water Bubble Wash -- 6. TRANSESTERIFICATION (BIODIESEL REACTION FOR CASTOR OILS < -- 2.5%FFA) -- 6.1. Esterification (Pretreatment where FFA > -- 2.5%) -- 7. PROPERTIES OF BIODIESEL -- 7.1. Properties of Raw Castor (Ricinus Communis) Oil and Its Methyl Ester -- 7.1.1. Density -- 7.1.2. Kinematic Viscosity -- 7.1.3. Gross Calorific Valu -- 7.1.4. Bureau of Indian Standards (IS: 1359-1959) -- 7.1.5. Flash Point -- 7.1.6. Acid Value -- 7.1.7. Free Fatty Acid Content -- 8. EFFECT OF DIFFERENT BLENDS ON DENSITY AND CALORIFIC VALUE OF CASTOR METHYL ESTER -- 9. PERFORMANCE AND EMISSION TEST OF CASTOR METHYL ESTER ON SINGLE CYLINDER DIESEL ENGINE TEST RIG -- 9.1. Emission Test -- 9.2. Carbon Monoxide (CO) Emissions -- 9.3. Carbon Dioxide (CO2) Emissions -- 9.4. Nitrogen Oxide (Nox) Emissions -- 9.5. Oxygen (O2) Emissions -- 9.6. Smoke Density -- CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- CHARACTERIZATION OF MULTIFUEL ECO-BLEND (DIESEL-BIODIESEL-BIOETHANOL) FOR UNMODIFIED CI ENGINES -- NOMENCLATURE -- Greek Symbols -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Tested Fuels -- 2.2. Preparation of the Fuel Blends -- 2.3. Drop Combustion Laboratory Test -- 2.4. Brake-Stand Tests -- 2.5. On-Field Test Trials -- 3. THEORY OF MULTIFUEL DROP IGNITION -- 4. RESULTS -- 4.1. Combustion of the Single Drop of Oxygenated Fuels. |
4.2. Brake-Stand Test Results -- 4.3. On-Field Test Results -- CONCLUSIONS -- REFERENCES -- PRODUCTION OF RENEWABLE LIQUID FUELS USING DIFFERENT FUEL PROCESSING METHODS -- ABSTRACT -- 1. INTRODUCTION -- 2. CHEMICAL REACTION DURING CONVENTIONAL TRANSESTERIFICATION OF VEGETABLE OILS -- 3. MATERIALS AND METHODS -- 3.1. Materials -- 4. RESULTS AND DISCUSSIONS -- 4.1. Biodiesel Productionmethods -- 4.1.1. Conentional Transesterifiction Method -- 4.1.2. Biodiesel Production Using Low Capacity Laboratory Scale Pressure Reactor -- 4.1.3. Microwave Assisted Continuous Transesterification Method -- 4.1.4. Comparison of Biodiesel Quality with Both Methods -- 4.2. Chemical Composition of Vegetable Oil and Its Structure -- 4.3. Fuel Processing -- 4.3.1. Fuel Properties -- 4.3.2. Viscosity -- 4.3.3. Cetane Number -- 4.3.4. Density -- 4.3.5. Flash Point -- 4.3.6. Calorifc Value -- 4.3.7. Cloud Point and Pour Point -- CONCLUSIONS -- REFERENCES -- ETHANOL FROM BIOMASS: APPLICATION TO THE OLIVE-PRUNING DEBRIS -- ABSTRACT -- INTRODUCTION -- LIGNOCELLUSIC BIOMASS PRETREATMENTS -- Ultrasonic Pre-Treatment -- Steam Explosion -- Autohydrolysis -- Pre-Treatment in Alkaline Medium -- Pre-Treatment with Dilute Acid -- AFEX Pre-Treatment -- Ozonation -- Extrusion -- ACID HYDROLYSIS -- diccionario - Ver Diccionario Detallado -- ENZYMATIC HYDROLYSIS -- FERMENTATION -- CONCLUSION -- REFERENCES -- LIQUID FUEL FOR NUCLEAR ENERGY: THE MOLTEN SALT FAST REACTOR (MSFR) CONCEPT -- ABSTRACT -- INTRODUCTION -- PART I. REVIEW OF MSR |
|
|
|
|
|
|
|
|
|
CONCEPTS -- Case#1: Inert Support and Minor Actinides (Minor Actinides Burner) -- Case#2: Fertile Material -- Case#3: Fertile and Fissile Materials -- Conclusion -- PART II. THE MOLTEN SALT FAST REACTOR (MSFR) -- II-A. Reactor Physics and Design -- II-A.1. Simulation Procedure -- II-A.2. MSFR Neutronic Core Description -- II-B. Reprocessing Scheme. |
II-B.1. On-Line Extraction of Gaseous Fission Products and Noble Metals. |
|
|
|
|
|
|
Sommario/riassunto |
|
Liquid fuels are those combustible or energy-generating molecules that can be harnessed to create mechanical energy. Most liquid fuels, in widespread use, are or derived from fossil fuels such as gasoline, diesel, kerosene, alcohols, and hydrogen. In this book, the authors present topical research in the study of the types, properties and production of liquid fuels. Topics discussed include ultradeep desulfurization sorbents for liquid fuels; coal mine methane emission mitigation technologies; high yield biofuel production from vegetable oils with supercritical alcohols; polymer waste pyrolysis for liquid fuel production; liquid biofuel production made from castor seed oil and production of renewable liquid fuels using different fuel processing methods. |
|
|
|
|
|
|
|
| |