1.

Record Nr.

UNISANNIOBVEE038987

Autore

Alessandro, Giuseppe : d' <duca di Pescolanciano ; fl. 1711>

Titolo

Arpa morale di D. Giuseppe d'Alessandro duca di Peschiolangiano

Pubbl/distr/stampa

In Napoli : nella stamperia di Felice Mosca, 1714

Descrizione fisica

[28], 286, [2] p. ; 12º

Collocazione

PBF. PICCIRIF. Piccirilli Sc.1      2587

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Segn.: π²(π1+a¹²)A-M¹²

La prima e l'ultima c. bianche.

2.

Record Nr.

UNINA9910956325903321

Autore

Chen Le

Titolo

Regularity and Strict Positivity of Densities for the Nonlinear Stochastic Heat Equations

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2021

©2021

ISBN

9781470468095

1470468093

Edizione

[1st ed.]

Descrizione fisica

1 online resource (114 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.273

Classificazione

60H1560G6035R60

Altri autori (Persone)

HuYaozhong

NualartDavid

Disciplina

519.2/2

Soggetti

Heat equation

Stochastic partial differential equations

Nonlinear difference equations

Malliavin calculus

Probability theory and stochastic processes -- Stochastic analysis -- Stochastic partial differential equations

Probability theory and stochastic processes -- Stochastic processes -- Random fields

Partial differential equations -- Miscellaneous topics -- Partial differential equations with randomness, stochastic partial differential equations



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Cover -- Title page -- Chapter 1. Introduction -- Acknowledgements -- Chapter 2. Preliminaries and Notation -- 2.1. Fundamental Solutions -- 2.2. Some Moment Bounds and Related Functions -- 2.3. Malliavin Calculus -- Chapter 3. Nonnegative Moments: Proof of Theorem 1.5 -- Chapter 4. Proof of Lemma 1.6 -- Chapter 5. Malliavin Derivatives of the Solution -- Chapter 6. Existence and Smoothness of Density at a Single Point -- 6.1. A Sufficient Condition -- 6.2. Proof of Theorem 1.1 -- Chapter 7. Smoothness of Joint Density at Multiple Points -- 7.1. Proof of Theorem 1.2 -- 7.2. Proof of Theorem 1.3 -- Chapter 8. Strict Positivity of Density -- 8.1. Two Criteria for Strict Positivity of Densities -- 8.2. Proof of Theorem 1.4 -- 8.3. Technical Propositions -- Appendix A. Appendix -- A.1. Some Miscellaneous Results -- A.2. A General Framework from Hu et al -- Bibliography -- Bibliography -- Back Cover.

Sommario/riassunto

"In this paper, we establish a necessary and sufficient condition for the existence and regularity of the density of the solution to a semilinear stochastic (fractional) heat equation with measure-valued initial conditions. Under a mild cone condition for the diffusion coefficient, we establish the smooth joint density at multiple points. The tool we use is Malliavin calculus. The main ingredient is to prove that the solutions to a related stochastic partial differential equation have negative moments of all orders. Because we cannot prove u(t, x) D for measure-valued initial data, we need a localized version of Malliavin calculus. Furthermore, we prove that the (joint) density is strictly positive in the interior of the support of the law, where we allow both measure-valued initial data and unbounded diffusion coefficient. The criteria introduced by Bally and Pardoux are no longer applicable for the parabolic Anderson model. We have extended their criteria to a localized version. Our general framework includes the parabolic Anderson model as a special case"--