1.

Record Nr.

UNINA9910955333303321

Autore

Vizio Lucia Di

Titolo

Intrinsic Approach to Galois Theory of

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2022

©2022

ISBN

9781470472306

1470472309

Edizione

[1st ed.]

Descrizione fisica

1 online resource (88 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.279

Classificazione

39A1312H10

Altri autori (Persone)

HardouinCharlotte

Disciplina

515/.625

512.32

Soggetti

Galois theory

Difference equations

Difference and functional equations -- Difference equations -- Difference equations, scaling ($q$-differences)

Field theory and polynomials -- Differential and difference algebra -- Difference algebra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Introduction -- Grothendieck conjecture for  -difference equations -- Intrinsic Galois groups -- Comparison with Malgrange-Granier Galois theory for non-linear differential equations -- Acknowledgments -- Part 1. Introduction to  -difference equations -- Chapter 1. Generalities on  -difference modules -- 1.1. Basic definitions -- 1.2.  -difference modules, systems and equations -- 1.3. Some remarks on solutions -- 1.4. Trivial  -difference modules -- Chapter 2. Formal classification of singularities -- 2.1. Regularity -- 2.2. Irregularity -- Part 2. Triviality of  -difference equations with rational coefficients -- Chapter 3. Rationality of solutions, when   is an algebraic number -- 3.1. The case of   algebraic, not a root of unity -- 3.2. Global nilpotence. -- 3.3. Proof of Theorem 3.8 (and of Theorem 3.6) -- Chapter 4. Rationality of solutions when   is transcendental -- 4.1. Statement of the main result -- 4.2. Regularity and triviality of the exponents -- 4.3. Proof of Theorem 4.2 -- 4.4. Link with iterative  -difference equations -- Chapter 5. A unified statement -- Part 3.



Intrinsic Galois groups -- Chapter 6. The intrinsic Galois group -- 6.1. Definition and first properties -- 6.2. Arithmetic characterization of the intrinsic Galois group -- 6.3. Finite intrinsic Galois groups -- 6.4. Intrinsic Galois group of a  -difference module over \C( ), for  ̸=0,1 -- Chapter 7. The parametrized intrinsic Galois group -- 7.1. Differential and difference algebra -- 7.2. Parametrized intrinsic Galois groups -- 7.3. Characterization of the parametrized intrinsic Galois group by curvatures -- 7.4. Parametrized intrinsic Galois group of a  -difference module over \C( ), for  ̸=0,1 -- 7.5. The example of the Jacobi Theta function -- Part 4. Comparison with the non-linear theory.

Chapter 8. Preface to Part 4. The Galois  -groupoid of a  -difference system, by Anne Granier -- 8.1. Definitions -- 8.2. A bound for the Galois  -groupoid of a linear  -difference system -- 8.3. Groups from the Galois  -groupoid of a linear  -difference system -- Chapter 9. Comparison of the parametrized intrinsic Galois group with the Galois  -groupoid -- 9.1. The Kolchin closure of the Dynamics and the Malgrange-Granier groupoid -- 9.2. The groupoid \Gal{ ( )} -- 9.3. The Galois  -groupoid \Galan{ ( )} vs the intrinsic parametrized Galois group -- 9.4. Comparison with known results -- Bibliography -- Back Cover.

Sommario/riassunto

"The Galois theory of difference equations has witnessed a major evolution in the last two decades. In the particular case of q-difference equations, authors have introduced several different Galois theories. In this memoir we consider an arithmetic approach to the Galois theory of q-difference equations and we use it to establish an arithmetical description of some of the Galois groups attached to q-difference systems"--