1.

Record Nr.

UNISA996223742403316

Titolo

Rivista di diritto processuale

Pubbl/distr/stampa

Padova, : CEDAM, 1946-

Descrizione fisica

1 online resource

Soggetti

Civil procedure - Italy

Procedure (Law)

Civil procedure

Procesrecht

Procediment civil

Dret processal

Procediment penal - Itàlia

Dret processal - Itàlia

Periodicals.

Revistes electròniques

Italy

Itàlia

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Title from cover.



2.

Record Nr.

UNINA9910921745903321

Autore

Ercole, Ludovico

Titolo

Contro la "giustizia predittiva" : per una lettura conservativa del principio di certezza del diritto / Ludovico Ercole

Pubbl/distr/stampa

Torino, : Giappichelli, c2024

ISBN

979-12-211-1020-3

Descrizione fisica

XVI, 183 p. ; 24 cm.

Collana

Studi del Dipartimento di giurisprudenza Luiss Guido Carli. Sezione monografie ; 6

Disciplina

340.114

Locazione

FGBC

Collocazione

XI O 149

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910631083703321

Autore

Yuan Ye

Titolo

Latent Factor Analysis for High-dimensional and Sparse Matrices : A particle swarm optimization-based approach / / by Ye Yuan, Xin Luo

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022

ISBN

9789811967030

9811967032

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (99 pages)

Collana

SpringerBriefs in Computer Science, , 2191-5776

Disciplina

519.535

Soggetti

Artificial intelligence - Data processing

Quantitative research

Data mining

Data Science

Data Analysis and Big Data

Data Mining and Knowledge Discovery

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chapter 1. Introduction -- Chapter 2. Learning rate-free Latent Factor Analysis via PSO -- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO -- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Latent Factor Analysis via PSO -- Chapter 5. Advanced Learning rate-free Latent Factor Analysis via P2SO -- Chapter 6. Conclusion and Discussion.

Sommario/riassunto

Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be



incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.