|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910915706803321 |
|
|
Autore |
Kohlhaase Jan |
|
|
Titolo |
Coefficient Systems on the Bruhat-Tits Building and Pro- |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781470472283 |
9781470453763 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (82 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.279 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Buildings (Group theory) |
Hecke algebras |
Group theory and generalizations -- Representation theory of groups -- Hecke algebras and their representations |
Topological groups, Lie groups -- Lie groups -- Representations of Lie and linear algebraic groups over local fields |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Introduction -- Chapter 1. A reminder on the Bruhat-Tits building -- 1.1. Stabilizers and Bruhat decompositions -- 1.2. Hecke algebras -- Chapter 2. Coefficient systems -- 2.1. Coefficient systems and diagrams -- 2.2. Acyclic coefficient systems on the standard apartment -- Chapter 3. The equivalence of categories -- 3.1. Representations and Hecke modules of stabilizer groups -- 3.2. Coefficient systems and pro- Iwahori-Hecke modules -- Chapter 4. Applications to representation theory -- 4.1. Homology in degree zero -- 4.2. Homotopy categories and their localizations -- 4.3. The functor to generalized ( ,Γ)-modules -- Bibliography -- Back Cover. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p. Let I be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If denotes the pro-p Iwahori-Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple |
|
|
|
|