1.

Record Nr.

UNINA9910915676003321

Autore

Fan Zhaobing

Titolo

Affine Hecke Algebras and Quantum Symmetric Pairs

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2023

©2023

ISBN

1-4704-7319-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (108 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.281

Classificazione

17B1020G4220G43

Altri autori (Persone)

LaiChun-Ju

LiYiqiang

Disciplina

512/.2

512.2

Soggetti

Hecke algebras

Schur complement

Affine algebraic groups

Quantum groups

Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)

Group theory and generalizations -- Linear algebraic groups and related topics -- Quantum groups (quantized function algebras) and their representations

Group theory and generalizations -- Linear algebraic groups and related topics -- Schur and $q$-Schur algebras

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Acknowledgment -- Notations -- Chapter 1. Introduction -- 1.1. History -- 1.2. The goal -- 1.3. Main results -- 1.4. The organization -- Part 1. Affine Schur algebras -- Chapter 2. Affine Schur algebras via affine Hecke algebras -- 2.1. Affine Weyl groups -- 2.2. Parabolic subgroups and cosets -- 2.3. Affine Schur algebra via Hecke -- 2.4. Set-valued matrices -- 2.5. A bijection -- 2.6. Computation in affine Schur algebra  ^{ }_{ , } -- 2.7. Isomorphism  ^{ ,   }_{ , }≅ ^{ }_{ , } -- Chapter 3. Multiplication formula for affine Hecke algebra -- 3.1. Minimal length representatives -- 3.2. Multiplication formula for affine Hecke algebra -- 3.3. An example -- Chapter 4. Multiplication formula for affine Schur algebra -- 4.1. A map



-- 4.2. Algebraic combinatorics for  ^{ }_{ , } -- 4.3. Multiplication formula for  ^{ }_{ , } -- 4.4. Special cases of the multiplication formula -- Chapter 5. Monomial and canonical bases for affine Schur algebra -- 5.1. Bar involution on  ^{ }_{ , } -- 5.2. A standard basis in  ^{ }_{ , } -- 5.3. Multiplication formula using [ ] -- 5.4. The canonical basis for  ^{ }_{ , } -- 5.5. A leading term -- 5.6. A semi-monomial basis -- 5.7. A monomial basis for  ^{ }_{ , } -- Part 2. Affine quantum symmetric pairs -- Chapter 6. Stabilization algebra  ̇^{ }_{ } arising from affine Schur algebras -- 6.1. A BLM-type stabilization -- 6.2. Stabilization of bar involutions -- 6.3. Multiplication formula for  ̇^{ }_{ } -- 6.4. Monomial and stably canonical bases for  ̇^{ }_{ } -- 6.5. Isomorphism  ̇^{ ,   }_{ }≅ ̇^{ }_{ } -- Chapter 7. The quantum symmetric pair ( _{ }, ^{ }_{ }) -- 7.1. The algebra  _{ } of Type A -- 7.2. The algebra  ^{ }_{ } -- 7.3. The algebra  ^{ }_{ } as a subquotient -- 7.4. Comultiplication on  ^{ }_{ } -- Chapter 8. Stabilization algebras arising from other Schur algebras.

8.1. Affine Schur algebras of Type -- 8.2. Monomial and canonical bases for  ^{  }_{ , } -- 8.3. Stabilization algebra of Type -- 8.4. Stabilization algebra of Type -- 8.5. Stabilization algebra of Type -- Appendix A. Length formulas in symmetrized forms by Zhaobing Fan, Chun-Ju Lai, Yiqiang Li and Li Luo -- A.1. Dimension of generalized Schubert varieties -- A.2. Length formulas of Weyl groups -- Bibliography -- Back Cover.

Sommario/riassunto

"We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bases for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra Kc n. We show that Kc n is a coideal subalgebra of quantum affine algebra Uppglnq, and Uppglnq,Kc nq forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion"--



2.

Record Nr.

UNINA9911018889603321

Titolo

Ciba Foundation Symposium on the Cerebrospinal Fluid : production, circulation and absorption / / editors for the Ciba Foundation, G.E.W. Wolstenholme and Cecilia M. O'Connor

Pubbl/distr/stampa

Boston, : Little, Brown and Co., [1958]

ISBN

9786613618559

9781280588723

1280588721

9780470719077

0470719079

9780470716540

0470716541

Descrizione fisica

1 online resource (349 p.)

Collana

Ciba Foundation symposium

Altri autori (Persone)

WolstenholmeG. E. W (Gordon Ethelbert Ward)

O'ConnorCecilia M <1927-> (Cecilia Mary)

Disciplina

612.8241

Soggetti

Cerebrospinal fluid

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

THE CEREBROSPINAL FLUID Production, Circulation and Absorption; CONTENTS; Chairman's opening remarks; Structural and functional changes in the telencephalic choroid plexus during human ontogenesis; Discussion; The structure and relationships of the arachnoid granulations; Discussion; The fine structure of the mammalian choroid plexus; Discussion; Nerves of the meninges and choroid plexus; Discussion; Observations on the choroid plexus maintained as an organ in tissue culture; Discussion; Observations on the production and circulation of the cerebrospinal fluid; Discussion

Studies of the formation and absorption of the cerebrospinal fluid using radioactive isotopesDiscussion; Vitamins and the cerebrospinal fluid; Discussion; Some aspects of the relationship between the cerebrospinal fluid and the central nervous system; Discussion; The existence of a barrier between the cerebrospinal fluid and the boundary of the brain, including experimental investigations on rabbits, using



bilirubinaemia; Discussion; Neuropathological observations on the cerebrospinal fluid pathway; Discussion

Mechanical aspects of the cerebrospinal fluid circulation- physiological, pathological, surgicalDiscussion; Clinicopathological aspects of the cerebrospinal fluid circulation; Discussion; A possible mechanism of hydrocephalus : the osmotic regulation of cerebrospinal fluid volume; Discussion; Some problems of experimental spinal anaesthesia; Discussion; General Discussion

Sommario/riassunto

The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.