1.

Record Nr.

UNINA990002642640403321

Autore

Hoffman, Raymond A.

Titolo

Inventories : A  guide to their control,costing and effect upon income and taxes / by Hof fmann,R.A.

Pubbl/distr/stampa

New York, : The Ronald Press Co., 1962

Descrizione fisica

x, 382 p. ; 23 cm

Locazione

ECA

Collocazione

C3-P25-21-RA

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910910493103321

Autore

Ding Yao

Titolo

Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images / / by Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024

ISBN

9789819780099

9819780098

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (189 pages)

Collana

Intelligent Perception and Information Processing, , 3059-3816

Altri autori (Persone)

ZhangZhili

HuHaojie

HeFang

ChengShuli

ZhangYijun

Disciplina

621.382

Soggetti

Image processing

Neural networks (Computer science)

Machine learning

Image Processing

Mathematical Models of Cognitive Processes and Neural Networks

Machine Learning

Lingua di pubblicazione

Inglese



Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Graph sample and aggregate-attention network for hyperspectral image classification -- Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification -- Pixel and hyperpixel level feature combining for hyperspectral image classification -- Global dynamic graph optimization for hyperspectral image classification -- Exploring relationship between transformer and graph convolution for hyperspectral image classification.

Sommario/riassunto

This book deals with hyperspectral image classification using graph neural network methods, focusing on classification model designing, graph information dissemination, and graph construction. In the book, various graph neural network based classifiers have been proposed for hyperspectral image classification to improve the classification accuracy. This book has promoted the application of graph neural network in hyperspectral image classification, providing reference for remote sensing image processing. It will be a useful reference for researchers in remote sensing image processing and image neural network design.