1.

Record Nr.

UNINA9910904178403321

Autore

Masu K (Kazuya)

Titolo

Elementary Semiconductor Device Physics : Understanding Energy Band Formation Using Circuit Theory

Pubbl/distr/stampa

Milton : , : Taylor & Francis Group, , 2024

©2025

ISBN

9781003439417

1003439411

9781040165416

1040165419

Edizione

[1st ed.]

Descrizione fisica

1 online resource (362 pages)

Altri autori (Persone)

AmakawaShuhei

Disciplina

621.38152

Soggetti

Electronic circuits

Energy bands

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Half Title -- Endorsement Page -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Symbol Index -- Chapter 1 Introduction -- 1.1 WHAT ARE SEMICONDUCTOR DEVICES? -- 1.2 CLASSIFICATION OF SOLIDS -- 1.3 PROPERTIES OF SEMICONDUCTORS -- 1.3.1 Arrangement of Atoms -- 1.3.2 Intrinsic and Doped Semiconductors -- 1.3.3 Carriers in Intrinsic Semiconductors -- 1.3.4 Energy Band Formation -- 1.3.5 Properties of Intrinsic Semiconductors -- 1.3.6 Energy Band Diagrams -- 1.3.7 n-Type and p-Type Semiconductors -- 1.4 WHAT IS THE MOST ABUNDANT ARTIFACT ON EARTH? -- 1.5 SUMMARY -- 1.6 PROBLEMS -- Chapter 2 Semiconductor Devices from a Circuit-Theoretic Standpoint -- 2.1 LINEAR CIRCUIT ELEMENTS -- 2.1.1 Linear Resistors -- 2.1.2 Linear Capacitors -- 2.1.3 Linear Inductors -- 2.2 NONLINEAR CIRCUIT ELEMENTS -- 2.2.1 Nonlinear Resistors -- 2.2.2 Nonlinear Capacitors and Inductors -- 2.3 TIME-INVARIANT AND TIME-VARYING CIRCUIT ELEMENTS -- 2.4 MULTITERMINAL ELEMENTS AND CONTROLLED SOURCES -- 2.5 TRANSISTORS -- 2.6 CIRCUIT-THEORETIC POSITIONING OF SEMICONDUCTOR DEVICES -- 2.7



SUMMARY -- 2.8 PROBLEMS -- Chapter 3 Waves in Periodic Structures -- 3.1  ANALOGIES IN PHYSICS -- 3.1.1 Commonality of Mathematical Structures -- 3.1.2 Overview of the Chapter -- 3.2 PROPERTIES OF PERIODIC NETWORKS -- 3.2.1 Infinitely Long Ladder Networks -- 3.2.2 Infinitely Long LC Ladders -- 3.2.3 Lossless Transmission Lines -- 3.2.4 Periodic Networks with a Finite Number of Repetitions -- 3.2.5 Kronig-Penney Model -- 3.3 DISPERSION RELATION AND PHASE AND GROUP VELOCITIES -- 3.3.1 Dispersion Relation -- 3.3.2 Phase Velocity and Group Velocity -- 3.3.3 Calculation of the Dispersion Relation -- 3.4 DISPERSION RELATION AND PROPERTIES OF SEMICONDUCTORS -- 3.5 BRAGG REFLECTION -- 3.6 SUMMARY -- 3.7 PROBLEMS -- Chapter 4 Physics of Semiconductors in Equilibrium.

4.1 DENSITY OF STATES IN ENERGY BAND AND DISTRIBUTION FUNCTION -- 4.2 CARRIER DENSITIES OF NONDEGENERATE SEMICONDUCTORS -- 4.2.1 Electron Density -- 4.2.2 Hole Density -- 4.2.3 Product of Hole and Electron Densities -- 4.2.4 Insulators -- 4.2.5 Fermi Level of Intrinsic Semiconductors -- 4.2.6 Carrier Density in Terms of Intrinsic Carrier Density -- 4.3 FERMI LEVEL OF DOPED SEMICONDUCTORS -- 4.3.1 Nondegenerately Doped Semiconductors -- 4.3.2 Degenerate Semiconductors -- 4.4 FERMI LEVEL AND CHEMICAL POTENTIAL -- 4.4.1 Properties of Chemical Potential -- 4.4.2 Chemical Potential in the Presence of an External Force -- 4.5 SUMMARY -- 4.6 PROBLEMS -- Chapter 5 Carrier Dynamics in Semiconductors -- 5.1 EQUILIBRIUM AND NONEQUILIBRIUM STATES, STEADY AND NONSTEADY STATES -- 5.2 QUASI-FERMI LEVELS AND CARRIER DENSITIES -- 5.2.1 Quasi-Chemical Potential -- 5.2.2 Electron and Hole Quasi-Fermi Levels -- 5.2.3 Nonequilibrium Carrier Densities -- 5.2.4 Logarithmic Transform of Carrier Densities -- 5.2.5 General Form of Nondegenerate Carrier Density Expressions -- 5.3 QUASI-FERMI LEVELS AND CURRENT DENSITY -- 5.3.1 Carrier Flux Density and Current Density -- 5.3.2 Quasi-Fermi Level Gradient and Current Density -- 5.3.3 Drift and Diffusion of Carriers -- 5.4 ELECTRIC CONDUCTION DUE TO ELECTRIC FIELD -- 5.4.1 Drift of Carriers -- 5.4.2 Relationship between Mobility and Conductivity -- 5.5 ELECTRIC CONDUCTION DUE TO CARRIER DIFFUSION -- 5.5.1 Diffusion Current -- 5.5.2 Einstein's Relation -- 5.6 CARRIER GENERATION AND RECOMBINATION -- 5.6.1 Direct Generation and Recombination -- 5.6.2 Indirect Generation and Recombination -- 5.6.3 Carrier Generation-Recombination Rates -- 5.6.4 Minority Carrier Lifetime -- 5.7 BASIC EQUATIONS FOR SEMICONDUCTOR DEVICES -- 5.8 DIELECTRIC RELAXATION -- 5.9 DEBYE LENGTH -- Chapter 6 p-n Junctions -- 6.1 WHAT IS A P-N JUNCTION?.

6.2 CONTACT POTENTIAL -- 6.2.1 What Is Contact Potential? -- 6.2.2 Work Function and Electron Affinity -- 6.2.3 Properties of Contact Potential -- 6.3 FORMATION OF A P-N JUNCTION -- 6.3.1 Contact between p-Type and n-Type Semiconductors -- 6.3.2 p-n Junctions in Equilibrium -- 6.3.3 Biased p-n Junctions -- 6.4 QUALITATIVE DESCRIPTION OF RECTIFICATION -- 6.5 ANALYSIS OF ABRUPT JUNCTIONS -- 6.5.1 Zero-Bias Abrupt Junctions -- 6.5.2 Biased Abrupt Junctions -- 6.6 CAPACITANCE OF P-N JUNCTIONS -- 6.6.1 Depletion Capacitance -- 6.6.2 Diffusion Capacitance -- 6.7 ONE-SIDED ABRUPT JUNCTIONS -- 6.8 CURRENT-VOLTAGE CHARACTERISTICS OF P-N JUNCTIONS -- 6.8.1 Equation of Current-Voltage Characteristics -- 6.8.2 Derivation of Current-Voltage Characteristics -- 6.8.3 Additional Notes on p-n Junctions -- 6.9 READING ENERGY BAND DIAGRAMS OF P-N JUNCTIONS -- 6.9.1 Bias Voltage Dependence -- 6.9.2 Lifetime Dependence -- Chapter 7 MOS Transistors -- 7.1 MOSFET STRUCTURE AND BASIC CHARACTERISTICS -- 7.1.1 Structure of MOSFETs -- 7.1.2



Basic Characteristics of MOSFETs -- 7.1.3 Outline of Analyzing MOSFETs -- 7.2 MOS CAPACITOR -- 7.2.1 Structure of MOS Capacitors -- 7.2.2 Analysis of MOS Capacitors -- 7.2.3 Classification of Surface Conditions of MOS Capacitors -- 7.2.4 Surface Electron Density and Surface Potential -- 7.2.5 Relation between Gate Voltage and Inversion Charge -- 7.2.6 Relation between Gate Voltage and Surface Potential -- 7.3 THREE-TERMINAL MOS STRUCTURES -- 7.3.1 Back-Gate-Referenced Analysis -- 7.3.2 Channel-Terminal-Referenced Analysis -- 7.4 FOUR-TERMINAL MOSFET -- 7.4.1 Back-Gate-Referenced Analysis -- 7.4.2 Source-Referenced Analysis -- 7.5 SCALING AND SHORT-CHANNEL MOSFETS -- 7.5.1 MOSFET Scaling -- 7.5.2 Short-Channel Effects -- 7.6 SUMMARY -- 7.7 PROBLEMS -- Chapter 8 Appendix -- A.1 MATRIX REPRESENTATIONS OF A TWO-PORT -- A.1.1 ABCD-Matrix.

A.1.2 S-Matrix -- A.2 NTH POWER OF UNIMODULAR MATRIX -- Chapter 9 Solutions to Selected Problems -- A.3.1 CHAPTER 1 -- A.3.2 CHAPTER 2 -- A.3.3 CHAPTER 3 -- A.3.4 CHAPTER 4 -- A.3.5 CHAPTER 5 -- A.3.6 CHAPTER 6 -- A.3.7 CHAPTER 7 -- References -- Index.

Sommario/riassunto

This book by two leading experts on integrated circuit design adopts an untraditional approach to introducing semiconductor devices to beginners. The authors use circuit theory to provide a digestible explanation of energy band theory and understanding of energy band diagrams.