1.

Record Nr.

UNISA996466399103316

Autore

Figueroa Sestelo Rubén

Titolo

Degree theory for discontinuous operators : applications to discontinuous differential equations / / Rubén Figueroa Sestelo, Rodrigo López Pouso, Jorge Rodríguez López

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-81604-4

Descrizione fisica

1 online resource (194 pages)

Collana

RSME Springer series ; ; Volume 6

Disciplina

514.2

Soggetti

Topological degree

Equacions diferencials

Grups discontinus

Grau topològic

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910903799903321

Autore

Lewin Mathieu

Titolo

Spectral Theory and Quantum Mechanics / / by Mathieu Lewin

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

9783031668784

3031668782

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (345 pages)

Collana

Universitext, , 2191-6675

Disciplina

515.7222

Soggetti

Operator theory

Mathematical physics

Differential equations

Quantum theory

Operator Theory

Mathematical Physics

Differential Equations

Quantum Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

1 Introduction to quantum mechanics: the hydrogen atom -- 2 Self-adjointness -- 3 Self-adjointness criteria: Rellich, Kato & Friedrichs -- 4 Spectral theorem and functional calculus -- 5 Spectrum of self-adjoint operators -- 6 N-particle systems, atoms, molecules -- 7 Periodic Schrödinger operators, electronic properties of materials -- Appendix A: Sobolev spaces -- Appendix B: Problems.

Sommario/riassunto

This textbook presents the spectral theory of self-adjoint operators on Hilbert space and its applications in quantum mechanics. Based on a course taught by the author in Paris, the book not only covers the mathematical theory but also provides its physical interpretation, offering an accessible introduction to quantum mechanics for students with a background in mathematics. The presentation incorporates numerous physical examples to illustrate the abstract theory. The final two chapters present recent findings on Schrödinger’s equation for systems of particles. While primarily designed for graduate courses, the



book can also serve as a valuable introduction to the subject for more advanced readers. It requires no prior knowledge of physics, assuming only a graduate-level understanding of mathematical analysis from the reader.