| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466399103316 |
|
|
Autore |
Figueroa Sestelo Rubén |
|
|
Titolo |
Degree theory for discontinuous operators : applications to discontinuous differential equations / / Rubén Figueroa Sestelo, Rodrigo López Pouso, Jorge Rodríguez López |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (194 pages) |
|
|
|
|
|
|
Collana |
|
RSME Springer series ; ; Volume 6 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Topological degree |
Equacions diferencials |
Grups discontinus |
Grau topològic |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910903799903321 |
|
|
Autore |
Lewin Mathieu |
|
|
Titolo |
Spectral Theory and Quantum Mechanics / / by Mathieu Lewin |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2024.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (345 pages) |
|
|
|
|
|
|
Collana |
|
Universitext, , 2191-6675 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Operator theory |
Mathematical physics |
Differential equations |
Quantum theory |
Operator Theory |
Mathematical Physics |
Differential Equations |
Quantum Physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
1 Introduction to quantum mechanics: the hydrogen atom -- 2 Self-adjointness -- 3 Self-adjointness criteria: Rellich, Kato & Friedrichs -- 4 Spectral theorem and functional calculus -- 5 Spectrum of self-adjoint operators -- 6 N-particle systems, atoms, molecules -- 7 Periodic Schrödinger operators, electronic properties of materials -- Appendix A: Sobolev spaces -- Appendix B: Problems. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This textbook presents the spectral theory of self-adjoint operators on Hilbert space and its applications in quantum mechanics. Based on a course taught by the author in Paris, the book not only covers the mathematical theory but also provides its physical interpretation, offering an accessible introduction to quantum mechanics for students with a background in mathematics. The presentation incorporates numerous physical examples to illustrate the abstract theory. The final two chapters present recent findings on Schrödinger’s equation for systems of particles. While primarily designed for graduate courses, the |
|
|
|
|
|
|
|
|
|
|
book can also serve as a valuable introduction to the subject for more advanced readers. It requires no prior knowledge of physics, assuming only a graduate-level understanding of mathematical analysis from the reader. |
|
|
|
|
|
| |