| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910890190903321 |
|
|
Autore |
Reinken Henning |
|
|
Titolo |
Controlling Mesoscale Turbulence : The Impact of Translational and Rotational Constraints on Pattern Formation in Microswimmer Suspensions / / by Henning Reinken |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2024.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (233 pages) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Soft condensed matter |
Colloids |
Statistical physics |
System theory |
Soft Materials |
Statistical Physics |
Complex Systems |
Fluids |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Theoretical Concepts -- Derivation of a Continuum Theory -- Unconstrained Mesoscale Turbulence -- Reorienting External Fields -- Obstacle Lattices,- Conclusions and Outlook -- Appendix. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis combines methods from statistical physics and nonlinear dynamics to advance research on the pattern formation in active fluids in several directions. In particular, it focuses on mesoscale turbulence, a state observed in microswimmer suspensions, which is characterized by the emergence of dynamic vortex patterns. The first major contribution concerns the bottom-up derivation of a frequently used continuum model of mesoscale turbulence from a set of particle-resolved stochastic equations. Utilizing the model, mesoscale turbulence is shown to induce nontrivial transport properties including a regime of optimal diffusion. The thesis then explores possible strategies of control. One of these relies on an external field that leads |
|
|
|
|
|
|
|
|
|
|
to stripe-like structures and can even suppress patterns entirely. The other involves geometric confinement realized by strategically placed obstacles that can reorganize the flow into a variety of ordered vortex structures. The turbulence transition inside an obstacle lattice is shown to have an intriguing analogy to an equilibrium transition in the Ising universality class. As a whole, this thesis provides important contributions to the understanding and control of turbulence in active fluids, as well as outlining exciting future directions, including applications. It includes a substantial introduction to the topic, which is suitable for newcomers to the field. |
|
|
|
|
|
| |