1.

Record Nr.

UNISALENTO991000155149707536

Autore

Franz, Marie-Louise : von

Titolo

Le fiabe del lieto fine : psicologia delle storie di redenzione / Marie-Luise von Franz

Pubbl/distr/stampa

Como : Red edizioni, 1987

ISBN

8870317102

Descrizione fisica

144 p. ; 22 cm

Collana

Immagini dal profondo ; 11

Altri autori (Persone)

Besana, Donatella

Soggetti

Favole

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Trad. di Donatella Besana



2.

Record Nr.

UNINA9910881096003321

Titolo

Belief Functions: Theory and Applications : 8th International Conference, BELIEF 2024, Belfast, UK, September 2–4, 2024, Proceedings / / edited by Yaxin Bi, Anne-Laure Jousselme, Thierry Denoeux

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN

3-031-67977-6

Edizione

[1st ed. 2024.]

Descrizione fisica

1 online resource (0 pages)

Collana

Lecture Notes in Artificial Intelligence, , 2945-9141 ; ; 14909

Disciplina

658.403

Soggetti

Artificial intelligence

Probabilities

Artificial Intelligence

Probability Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

-- Machine learning.  -- Deep evidential clustering of images.  -- Incremental Belief-peaks Evidential Clustering.  -- Imprecise Deep Networks for Uncertain Image Classification.  -- Dempster-Shafer Credal Probabilistic Circuits.  -- Uncertainty quantification in regression neural networks using likelihood-based belief functions.  -- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.  -- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.  -- Multi-oversampling with evidence fusion for imbalanced data classification.  -- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.  -- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.  -- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.  -- Statistical inference.  -- Large-sample theory for inferential models: A possibilistic Bernstein–von Mises theorem.  -- Variational approximations of possibilistic inferential models.  -- Decision theory via model-free generalized fiducial inference.  -- Which statistical hypotheses are afflicted with



false confidence?.  -- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.  -- Information fusion and optimization.  -- Why Combining Belief Functions on Quantum Circuits?.  -- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.  -- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.  -- Fusing independent inferential models in a black-box manner.  -- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.  -- Measures of uncertainty, conflict and distances.  -- A mean distance between elements of same class for rich labels.  -- Threshold Functions and Operations in the Theory of Evidence.  -- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.  -- An OWA-based Distance Measure for Ordered Frames of Discernment.  -- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.  -- Continuous belief functions, logics, computation.  -- Gamma Belief Functions.  -- Combination of Dependent Gaussian Random Fuzzy Numbers.  -- A 3-valued Logical Foundation for Evidential Reasoning.  -- Accelerated Dempster Shafer using Tensor Train Representation.

Sommario/riassunto

This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2–4, 2024. The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.