1.

Record Nr.

UNINA9910879600103321

Autore

von Meier Alexandra

Titolo

Electric Power Systems : A Conceptual Introduction

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2024

©2024

ISBN

1-394-24101-1

1-394-24103-8

1-394-24102-X

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (542 pages)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- List of Figures -- Preface -- Acknowledgments -- About the Companion Website -- Chapter 1 Physics of Electricity -- 1.1 Basic Quantities -- 1.1.1 Charge -- 1.1.2 Potential or Voltage -- 1.1.3 Ground -- 1.1.4 Conductivity -- 1.1.5 Current -- 1.2 Ohm's Law -- 1.2.1 Resistance -- 1.2.2 Conductance -- 1.2.3 Insulation -- 1.3 Circuit Fundamentals -- 1.3.1 Static Charge -- 1.3.2 Closing a Circuit -- 1.3.3 Voltage Drop -- 1.3.4 Electric Shock -- 1.4 Resistive Heating -- 1.4.1 Calculating Resistive Heating -- 1.4.2 Transmission Voltage and Resistive Loses -- 1.5 Electric and Magnetic Fields -- 1.5.1 The Field as a Concept -- 1.5.2 Electric Fields -- 1.5.3 Magnetic Fields -- 1.5.4 Electromagnetic Induction -- 1.5.5 Electromagnetic Fields and Health Effects -- 1.5.6 Electromagnetic Radiation -- Problems and Questions -- Chapter 2 DC Circuit Analysis -- 2.1 Modeling Circuits -- 2.2 Series and Parallel Circuits -- 2.2.1 Resistance in Series -- 2.2.2 Resistance in Parallel -- 2.2.3 Network Reduction -- 2.2.4 Dual Concepts -- 2.2.5 Practical Aspects -- 2.3 Kirchhoff's Laws -- 2.3.1 Kirchhoff's Voltage Law -- 2.3.2 Kirchhoff's Current Law -- 2.3.3 Application to Simple Circuits -- 2.4 The Superposition Principle -- 2.5 Thévenin and Norton Equivalent Circuits -- 2.5.1 One‐ports: Battery and PV Cell -- 2.5.2 Thévenin and Norton Theorems -- 2.6 Magnetic Circuits -- Problems and Questions



-- Chapter 3 AC Power -- 3.1 Alternating Current and Voltage -- 3.1.1 Historical Notes -- 3.1.2 Mathematical Description of Alternating Current -- 3.1.3 The rms Value -- 3.2 Power for the Resistive Case -- 3.2.1 Power Dissipated Versus Transmitted -- 3.2.2 Time‐Varying Resistive Power -- 3.3 Impedance -- 3.3.1 Inductance -- 3.3.2 Inductive Reactance -- 3.3.3 Capacitance -- 3.3.4 Capacitive Reactance -- 3.3.5 Complex Numbers.

3.3.6 Complex Impedance -- 3.3.7 Complex Admittance -- 3.4 Complex Power -- 3.4.1 Real Power and Power Factor -- 3.4.2 Reactive Power -- 3.4.3 Power in the Complex Plane -- 3.4.4 Reactive Power in the Power System Context -- 3.4.5 Reactive Compensation -- 3.5 Phasors -- 3.5.1 Introduction -- 3.5.2 Derivation -- 3.5.3 Euler's Equation -- 3.5.4 Operations with Phasors -- 3.5.5 Ohm's Law in Complex Form -- 3.5.6 Kirchhoff's Laws with Phasors -- 3.5.7 Complex Power in Phasor Notation -- Problems and Questions -- Chapter 4 Three‐Phase Power -- 4.1 Three‐Phase Basics -- 4.1.1 Rationale for Three Phases -- 4.1.2 Number of Phases -- 4.1.3 Balancing Loads -- 4.1.4 Delta and Wye Connections -- 4.1.5 Practical Aspects -- 4.1.6 Three‐phase Complex Power -- 4.1.7 Three‐phase Impedance -- 4.2 Symmetrical Components -- 4.2.1 Converting Symmetrical Components -- 4.2.2 Ohm's Law with Symmetrical Components -- 4.3 Direct and Quadrature Components -- Problems and Questions -- Chapter 5 Power Quality -- 5.1 Voltage -- 5.1.1 Conservation Voltage Reduction -- 5.2 Frequency -- 5.3 Waveform and Harmonics -- 5.3.1 Current Versus Voltage Harmonics -- 5.3.2 Quantifying Harmonic Distortion -- 5.3.3 Distortion Power Factor -- 5.3.4 Transformers and Triplen Harmonics -- Problems and Questions -- Chapter 6 Loads -- 6.1 Types of Loads -- 6.1.1 Resistive Loads -- 6.1.2 Dimmer Circuits -- 6.1.3 Motors -- 6.1.4 Electronic Devices -- 6.1.5 Electric Vehicles -- 6.2 Single‐ and Multiphase Connections -- 6.3 Voltage Response of Loads -- 6.3.1 ZIP Load Model -- 6.3.2 Transient Response -- 6.4 Load in Aggregate -- 6.4.1 Historical Context -- 6.4.2 Coincident and Noncoincident Demand -- 6.4.3 Load Profiles and Load Duration Curve -- 6.4.4 Managing Load -- Problems and Questions -- Chapter 7 Transmission and Distribution Systems -- 7.1 System Structure -- 7.1.1 Interconnection.

7.1.2 Structural Features -- 7.1.3 International Differences in Distribution System Design -- 7.1.4 Stations and Substations -- 7.1.5 Topology -- 7.1.6 Power Islands -- 7.1.7 Loop Flow -- 7.1.8 Reconfiguring the System -- 7.2 Qualitative Characteristics of Power Lines -- 7.2.1 Conductors -- 7.2.2 Bundled Conductors -- 7.2.3 Towers, Insulators, and Other Components -- 7.2.4 DC Transmission -- 7.2.5 Superconducting Transmission -- 7.3 Loading -- 7.3.1 Thermal Limits -- 7.3.2 Stability Limit -- 7.3.3 Surge Impedance Loading -- 7.4 Voltage Control -- 7.4.1 Tap Changers -- 7.4.2 Reactive Compensation -- 7.5 Protection -- 7.5.1 Basics of Protection and Protective Devices -- 7.5.2 Protection Coordination -- 7.5.3 Unsymmetrical and Asymmetrical -- Problems and Questions -- Chapter 8 Transformers -- 8.1 General Properties -- 8.2 Transformer Heating -- 8.3 Delta and Wye Transformers -- 8.4 Autotransformers -- 8.5 Transformer Modeling -- 8.5.1 Nonideal Characteristics -- 8.5.2 Referred Impedance -- 8.5.3 Open‐Circuit and Short‐Circuit Tests -- 8.6 Voltage Regulation -- 8.6.1 Approximation -- 8.7 Per‐unit System -- Problems and Questions -- Chapter 9 Analyzing Transmission Lines -- 9.1 Transmission Line Inductance -- 9.1.1 Internal Flux Linkage -- 9.1.2 External Flux Linkage -- 9.1.3 Per‐Phase Inductance -- 9.1.4 Geometric Mean Distance and Radius -- 9.2 Transmission Line Capacitance -- 9.3 ABCD Parameters -- 9.3.1 Two‐Ports -- 9.3.2 Line



Models Overview -- 9.3.3 Short Line Model -- 9.3.4 Short Line Phasor Relationship -- 9.3.5 Medium Line Model -- 9.3.5.1 Charging Current -- 9.3.6 Medium Line Qualitative Observations -- 9.3.7 Long Line Model: Introduction -- 9.3.8 Long Line Model: Wave Behavior -- 9.3.9 Long Line Model: ABCD Parameters -- 9.3.9.1 Lumped‐Circuit Equivalent -- 9.3.10 Lossless Line -- Problems and Questions -- Chapter 10 Machines.

10.1 The Simple Generator -- 10.2 D.C. Machine -- 10.2.1 The Paper Clip Motor -- 10.3 The Synchronous Generator -- 10.3.1 Basic Components and Functioning -- 10.3.2 Number of Poles -- 10.3.3 Other Design Aspects -- 10.4 Operational Control -- 10.4.1 Single Generator: Real Power -- 10.4.2 Single Generator: Reactive Power -- 10.4.3 Multiple Generators: Real Power -- 10.4.4 Multiple Generators: Reactive Power -- 10.5 Operating Limits -- 10.6 The Induction Machine -- 10.6.1 General Characteristics -- 10.6.2 Electromagnetic Characteristics -- 10.6.3 Reluctance Machine -- 10.7 Modeling Generators -- 10.7.1 Equivalent Circuit Model -- 10.7.2 Over‐ and Underexcitation -- 10.7.3 Power Transfer -- Problems and Questions -- Chapter 11 Matching Generation and Load -- 11.1 Load Frequency Control -- 11.1.1 Inertia -- 11.1.2 Primary Frequency Regulation -- 11.1.3 Secondary Frequency Regulation -- 11.1.3.1 Multiple Generators -- 11.1.4 Frequency Tolerance -- 11.1.5 Area Control Error -- 11.2 Economic Dispatch -- 11.2.1 Filling in the Load Duration Curve -- 11.2.2 Lagrangian Method -- Problems and Questions -- Chapter 12 Power Flow -- 12.1 Introduction -- 12.2 The Power Flow Problem -- 12.2.1 Network Representation -- 12.2.2 Choice of Variables -- 12.2.3 Nonlinearity -- 12.2.4 Types of Buses -- 12.2.5 Variables for Balancing Real Power -- 12.2.6 Variables for Balancing Reactive Power -- 12.2.7 The Slack Bus -- 12.2.8 Summary of Variables -- 12.3 Example with Interpretation of Results -- 12.3.1 Six‐bus Example -- 12.3.2 Tweaking the Case -- 12.3.3 Conceptualizing Power Flow -- 12.4 Power Flow Equations and Solution Methods -- 12.4.1 Derivation of Power Flow Equations -- 12.4.2 The Bus Admittance Matrix -- 12.4.3 Solution Methods -- 12.4.4 Iterative Computation -- 12.4.5 Power Flow Example -- 12.4.5.1 Low‐voltage Solution -- 12.4.6 Shortcuts.

12.4.6.1 Dishonest Newton-Raphson -- 12.4.6.2 Decoupled Power Flow -- 12.4.6.3 Fast‐Decoupled Power Flow -- 12.4.6.4 DC Power Flow -- 12.5 Applications -- 12.5.1 Optimal Power Flow -- 12.5.2 State Estimation -- 12.6 LinDistFlow -- 12.6.1 Derivation -- Problems and Questions -- Chapter 13 Limits -- 13.1 Adequacy -- 13.2 Reliability -- 13.2.1 Measures of Reliability -- 13.2.2 Valuing Reliability -- 13.3 Security -- 13.4 Stability -- 13.4.1 Overview -- 13.4.2 The Concept of Stability -- 13.4.3 Angle Stability -- 13.4.4 Transient Angle Stability -- 13.4.5 Voltage Stability -- 13.5 Power Transfer Limits -- 13.5.1 P-V Curve -- 13.5.2 V-Q Curve -- Problems and Questions -- Chapter 14 Power Electronics -- 14.1 Power Conversion: Introduction -- 14.2 Legacy Power Conversion Technologies -- 14.2.1 Mercury Arc Valves -- 14.2.2 Vacuum Diodes and Triodes -- 14.3 Solid‐State Technology -- 14.3.1 p-n Junctions and Diodes -- 14.3.2 Transistors -- 14.3.3 Thyristors -- 14.4 Inverters -- 14.4.1 Basic Inverter Function -- 14.4.2 Sample Inverter Circuit -- 14.4.3 Inverter Control -- 14.5 FACTS -- Chapter 15 Resources -- 15.1 Generation Resources -- 15.1.1 Hydroelectricity -- 15.1.2 Thermal Generation -- 15.1.2.1 Fossil Fuels -- 15.1.2.2 Biomass -- 15.1.2.3 Geothermal Power -- 15.1.2.4 Nuclear Power -- 15.1.2.5 Concentrating Solar Power -- 15.1.3 Solar Photovoltaics -- 15.1.4 Wind Power -- 15.2 Distributed Generation -- 15.2.1 DG Resources -- 15.2.1.1 Fuel Cells -- 15.2.1.2 Microturbines -- 15.2.1.3 Small Generators -- 15.2.1.4 Small Wind Turbines --



15.2.2 DG Integration -- 15.3 Storage -- 15.3.1 Hydroelectric Storage -- 15.3.2 Batteries -- 15.3.3 Other Storage Technologies -- 15.3.3.1 Thermal Storage -- 15.3.3.2 Compressed Air -- 15.3.3.3 Flywheels -- 15.3.3.4 SMES -- 15.3.3.5 Supercapacitors -- 15.3.3.6 Hydrogen -- 15.4 Microgrids -- Chapter 16 Making the System Work.

16.1 Time Scales for Operation and Control.