1.

Record Nr.

UNINA9910877703503321

Autore

Cooke Roger <1942->

Titolo

Classical algebra : its nature, origins, and uses / / Roger Cooke

Pubbl/distr/stampa

Hoboken, N.J., : Wiley-Interscience, c2008

ISBN

1-281-28501-3

9786611285012

0-470-27798-X

0-470-27797-1

Descrizione fisica

1 online resource (220 p.)

Disciplina

512

Soggetti

Algebra

Algebra - History

Algebraic logic

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Classical Algebra Its Nature, Origins, and Uses; Contents; Preface; Part 1. Numbers and Equations; Lesson 1. What Algebra Is; 1. Numbers in disguise; 1.1.""Classical"" and modern algebra; 2. Arithmetic and algebra; 3. The ""environment"" of algebra: Number systems; 4. Important concepts and principles in this lesson; 5. Problems and questions; 6. Further reading; Lesson 2. Equations and Their Solutions; 1. Polynomial equations, coefficients, and roots; 1.1. Geometric interpretations; 2. The classification of equations; 2.1. Diophantine equations

3. Numerical and formulaic approaches to equations3.1. The numerical approach; 3.2. The formulaic approach; 4. Important concepts and principles in this lesson; 5. Problems and questions; 6. Further reading; Lesson 3. Where Algebra Comes From; 1. An Egyptian problem; 2. A Mesopotamian problem; 3. A Chinese problem; 4. An Arabic problem; 5. A Japanese problem; 6. Problems and questions; 7. Further reading; Lesson 4. Why Algebra Is Important; 1. Example: An ideal pendulum; 2. Problems and questions; 3. Further reading; Lesson 5. Numerical Solution of Equations; 1. A simple but crude method

2. Ancient Chinese methods of calculating2.1. A linear problem in three



unknowns; 3. Systems of linear equations; 4. Polynomial equations; 4.1. Noninteger solutions; 5. The cubic equation; 6. Problems and questions; 7. Further reading; Part 2. The Formulaic Approach to Equations; Lesson 6. Combinatoric Solutions I: Quadratic Equations; 1. Why not set up tables of solutions?; 2. The quadratic formula; 3. Problems and questions; 4. Further reading; Lesson 7. Combinatoric Solutions II: Cubic Equations; 1. Reduction from four parameters to one; 2. Graphical solutions of cubic equations

3. Efforts to find a cubic formula3.1. Cube roots of complex numbers; 4. Alternative forms of the cubic formula; 5. The ""irreducible case""; 5.1. Imaginary numbers; 6. Problems and questions; 7. Further reading; Part 3. Resolvents; Lesson 8. From Combinatorics to Resolvents; 1. Solution of the irreducible case using complex numbers; 2. The quartic equation; 3. Viete's solution of the irreducible case of the cubic; 3.1. Comparison of the Viè€te and Cardano solutions; 4. The Tschirnhaus solution of the cubic equation; 5. Lagrange's reflections on the cubic equation

5.1. The cubic formula in terms of the roots5.2. A test case: The quartic; 6. Problems and questions; 7. Further reading; Lesson 9. The Search for Resolvents; 1. Coefficients and roots; 2. A unified approach to equations of all degrees; 2.1. A resolvent for the cubic equation; 3. A resolvent for the general quartic equation; 4. The state of polynomial algebra in 1770; 4.1. Seeking a resolvent for the quintic; 5. Permutations enter algebra; 6. Permutations of the variables in a function; 6.1.Two-valued functions; 7. Problems and questions; 8. Further reading; Part 4. Abstract Algebra

Lesson 10. Existence and Constructibility of Roots

Sommario/riassunto

This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precurso