1.

Record Nr.

UNINA9910877553203321

Autore

Singh Jaspal

Titolo

Biotechnology in Environmental Remediation

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2023

ISBN

3-527-83906-2

3-527-83904-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (307 pages)

Altri autori (Persone)

BajpaiRajesh

GangwarRavi Kumar

Disciplina

628.5

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Biotechnology and Various Environmental Concerns: An Introduction -- 1.1 Introduction -- References -- Chapter 2 Plant Biotechnology: Its Importance, Contribution to Agriculture and Environment, and Its Future Prospects -- 2.1 Where do Environment and Biotechnology Meet? -- 2.1.1 Introduction -- 2.1.2 Chief Applications -- 2.2 Understanding Agricultural Biotechnology -- 2.2.1 Introduction -- 2.2.2 Main Components of Agricultural Biotechnology -- 2.2.3 Applications of Agricultural Biotechnology -- 2.3 Animal and Plant Biotechnology -- 2.3.1 Animal Biotechnology -- 2.3.2 Plant Biotechnology -- 2.3.2.1 Introduction -- 2.3.2.2 Traditional Breeding and Genetic Modification -- 2.3.2.3 Creating GMOs -- 2.3.2.4 Applications of GM Plants -- 2.3.2.5 GMO Controversy -- 2.3.2.6 Conclusion -- References -- Chapter 3 Recent Advances in the Remediation of Petroleum Hydrocarbon Contamination with Microbes -- 3.1 Introduction -- 3.2 Sources of Petroleum Hydrocarbons -- 3.3 Composition of Petroleum Pollutants -- 3.4 Toxic Effects of Petroleum Hydrocarbons -- 3.4.1 Hydrocarbon Toxicity to Microorganisms -- 3.4.2 Petroleum Toxicity to Soil -- 3.4.3 Petroleum Toxicity and Plant Growth -- 3.4.4 Petroleum Toxicity and Human Health -- 3.5 Hydrocarbon‐Degrading Microorganisms -- 3.6 Mechanism of



Petroleum Hydrocarbon Degradation -- 3.6.1 Enzymatic Degradation of Hydrocarbons -- 3.6.2 Degradation of Hydrocarbons by Biosurfactants -- 3.6.3 Petroleum Hydrocarbon Degradation by Immobilized Cells -- 3.7 Types of Hydrocarbon Degradation -- 3.7.1 Degradation of Hydrocarbons Under Aerobic Condition -- 3.7.2 Hydrocarbon Degradation Under Anaerobic Condition -- 3.8 Factors Affecting Hydrocarbon Degradation by Microorganisms -- 3.8.1 Hydrocarbon Biodegradation and Temperature.

3.8.2 Hydrocarbon Biodegradation and pH -- 3.8.3 Microbial Population, Microbial Efficiency, and Catabolism -- 3.8.4 Hydrocarbon Biodegradation and Consortium of Microbes -- 3.8.5 Hydrocarbon Content and Soil -- 3.8.6 Salinity and Hydrocarbon Biodegradation -- 3.8.7 Presence of Dissolved Oxygen in Soil -- 3.8.8 Nutrient Status of Soil -- 3.9 Conclusion -- References -- Chapter 4 Remediation of Heavy Metals: Tools and Techniques -- 4.1 Introduction -- 4.2 Bioremediation -- 4.3 Organism of Bioremediation -- 4.3.1 Factors Affecting Microbial Bioremediation -- 4.3.2 Biotic Factors -- 4.3.3 Abiotic Factors -- 4.4 Techniques of Bioremediation -- 4.4.1 Solid‐Phase Bioremediation -- 4.4.2 Slurry‐Phase Bioremediation -- 4.5 Types of Bioremediation -- 4.5.1 Biopile -- 4.5.2 Windrows -- 4.5.3 Land Farming -- 4.5.4 Bioreactor -- 4.5.4.1 Techniques for In Situ Bioremediation -- 4.5.4.2 Types of In Situ Bioremediation -- 4.5.5 Bioventing -- 4.5.6 Bioslurping -- 4.5.7 Biosparging -- 4.5.8 Phytoremediation -- 4.5.9 Permeable Reactive Barrier (PRB) -- 4.6 Prospects of Bioremediation -- 4.7 Advantages and Disadvantages of Bioremediation -- 4.7.1 Bioremediation's Drawbacks -- 4.8 Conclusion -- Acknowledgment -- References -- Chapter 5 Soil Biodiversity and Environmental Sustainability -- 5.1 Introduction -- 5.1.1 Biodiversity in the Soil -- 5.1.2 Environmental Sustainability -- 5.2 Importance of Soil Biodiversity in Supporting Terrestrial Life and Diversity -- 5.2.1 Nutrient Acquisition and Retention -- 5.2.2 Pest and Disease Control -- 5.3 Soil Biodiversity and Climate Change -- 5.4 Soil Biodiversity and Hydrological Cycle -- 5.5 Soil Biodiversity and Environmental Remediation -- 5.6 Conclusion -- References -- Chapter 6 Plant Growth‐Promoting Rhizobacteria: Role, Applications, and Biotechnology -- 6.1 Introduction -- 6.2 Functions and Role of PGPR.

6.3 Range and Different Diversity of PGPR -- 6.3.1 Rhizosphere: Focal Point of PGPR -- 6.3.2 Characteristics of an Ideal PGPR -- 6.3.3 Growth‐Enhancing Activities -- 6.3.4 PGPR Over the Period of Time -- 6.4 Mechanisms of Plant Growth Promotion by PGPR -- 6.5 Biotechnological Effects of PGPR -- 6.5.1 Biological Fixation of Nitrogen -- 6.5.2 Solubilization of Phosphorus -- 6.5.3 Antagonistic Activity and Biocontrol Agents -- 6.5.4 Synthesis of Hydrolytic Enzymes -- 6.5.5 Production of Siderophores -- 6.5.6 Production of Antibiotics -- 6.5.7 Production of Ethylene -- 6.5.8 Production of Gibberellins and Cytokinin (Stimulators of Plant Growth) -- 6.5.9 Production of Bacteriocins -- 6.5.10 Induced Systemic and Systemic Acquired Resistance (ISR and SAR) -- 6.6 PGPR Cometabolism -- 6.7 Classification and Assortment of PGPR Strains -- 6.8 Commercial Significance of PGPR -- 6.8.1 Restrains with PGPR -- 6.9 Future Prospects of PGPR -- 6.10 Concluding Remarks of PGPR -- References -- Chapter 7 A Green Approach for CO2 Fixation Using Microalgae Adsorption: Biotechnological Approach -- 7.1 Introduction -- 7.2 Effect of CO2 Emissions on Environment -- 7.3 Advanced CO2‐Capturing Methods -- 7.3.1 Absorption -- 7.3.2 Adsorption -- 7.3.3 Membrane Separation -- 7.4 Biological Methods for CO2 Capturing -- 7.5 Earlier Technologies of Carbon Dioxide Capturing -- 7.6 Natural Carbon Capture Technology: Photosynthesis -- 7.7 Microalgae as the Modern



Tool to Capture CO2 -- 7.8 Biology of Microalgae as Photosynthetic Organisms and CO2 Absorbers -- 7.9 Conclusion -- References -- Chapter 8 Assessment of In‐Vitro Culture as a Sustainable and Eco‐friendly Approach of Propagating Lichens and Their Constituent Organisms for Bioprospecting Applications -- 8.1 Lichens and Their Structural Organization -- 8.1.1 Structural Organization.

8.1.2 Role of Mycobionts and Phycobionts in the Symbiotic Association -- 8.2 Lichens and Bioprospection -- 8.3 Lichens as Sources of Unique Metabolites -- 8.4 Need of In Vitro Culture of Lichen and Lichen Components and Its Utility in Environment Conservation -- 8.5 In Vitro Culture of Lichens/Constituent Organisms -- 8.5.1 Efforts Carried Out on Lichen Culture -- 8.5.2 Mycobiont Culture -- 8.5.3 Endolichenic Fungal Culture -- 8.6 Use of In Vitro Lichen Culture for Bioprospecting -- 8.6.1 lichen Symbiont/Mycobiont Culture -- 8.6.2 Endolichenic Fungal Culture -- 8.7 Challenges Associated -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Bioprospection Potential of Indian Cladoniaceae Together with Its Distribution, Habitat Preference, and Biotechnological Prospects -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.3 Results and Discussion -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Biotechnological Approach for the Wastewater Management -- 10.1 Introduction -- 10.1.1 Sources of Water Pollution -- 10.1.2 Water Pollutants -- 10.1.2.1 Sewage Pollutants -- 10.1.2.2 Industrial Pollutants -- 10.1.2.3 Agriculture Pollutant -- 10.1.3 Physical Pollutants -- 10.1.3.1 Radioactive Waste -- 10.1.3.2 Thermal Sources -- 10.1.3.3 River Streams and Mountain Springs Sediments -- 10.1.3.4 Petroleum Products -- 10.2 Effects of Water Pollution -- 10.3 Role of Biotechnology to Control Water Pollution -- 10.3.1 Genetically Engineered Microorganisms (GEMs) in Remediation of Pollution -- 10.3.1.1 Biotechnological Approaches for Water Pollution Remediation: -- 10.3.1.2 Aerobic Biological Treatment -- 10.3.1.3 Activated Sludge Process -- 10.3.1.4 Constructed Wetlands -- 10.3.1.5 Biological Filters‐Fixed Film Systems -- 10.3.1.6 Rotating Biological Contactors -- 10.3.1.7 Fluidized Bed Reactor -- 10.3.1.8 Expanded Bed Reactor (EBR).

10.3.2 Anaerobic Biological Treatment -- 10.3.2.1 Membrane Bioreactors (MBRs) -- 10.3.2.2 Bioremediation -- 10.3.2.3 Bioremediation of Industrial Effluent Using Biotechnology -- 10.3.2.4 Bioremediation of Pulp and Paper Mill Effluent -- 10.3.2.5 Bioremediation of Spilled Oil and Grease Deposits -- 10.3.2.6 Bioremediation of Textile Industry Effluent Through Biotechnology -- 10.3.2.7 Bioremediation of Distillery Effluent Using Biotechnology -- 10.3.2.8 Phytoremediation -- 10.4 Role of Biotechnology in Phytoremediation -- 10.4.1 Bioaugmentation -- 10.4.2 Biosorption -- 10.4.3 Advantages -- 10.5 Conclusion -- References -- Chapter 11 The Application of Biotechnology in the Realm of Bioenergy and Biofuels -- 11.1 Introduction -- 11.2 Bioenergy (Biomass Energy) -- 11.2.1 Biomass and Its Sources -- 11.2.2 Biomass to Energy -- 11.2.2.1 Biomass to Biogas -- 11.2.2.2 Biomass to Biofuels -- 11.2.3 Agri‐biomass (Biochar) to Energy -- 11.3 Conclusions -- References -- Chapter 12 Nanotechnological Approach for the Abatement of Environmental Pollution: A Way Forward Toward a Clean Environment -- 12.1 Introduction -- 12.2 Nanoparticles: Properties, Types, and Route of Synthesis -- 12.2.1 Properties of Nanoparticles -- 12.2.2 Classification of Nanoparticles -- 12.2.3 Synthesis of Nanoparticles -- 12.2.3.1 Top‐Down Approach -- 12.2.3.2 Bottom‐Up Approach -- 12.2.4 Environmental Applications of nanoparticles -- 12.3 Nanoremediation for Environment Cleanup -- 12.3.1 Nanoremediation of Air -- 12.3.1.1 Nanoadsorption -- 12.3.1.2 Degradation by



Nanocatalysis -- 12.3.1.3 Nanofiltration -- 12.3.2 Nanoremediation of Water -- 12.3.2.1 Adsorption -- 12.3.2.2 Membrane Process -- 12.3.2.3 Photocatalysis -- 12.3.3 Nanoremediation of Soil -- 12.3.4 Nanomaterial for Control of Environmental Pathogens -- 12.4 Challenges in Nanoremediation of the Environment and Solution.

12.5 Conclusion and Future Prospects.